Duration $2\frac{1}{2}$ Hrs

REVISED COURSE

Marks: 75

N.B. :

- (1) All questions are compulsory
- (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

(8)

- (i) In a metric space (X,d), prove that arbitrary union of open sets is open in X. Give an example to show that arbitrary intersection of open sets is not open in X.
- (ii) Let (X, d) be a metric space and $A, B \subseteq X$. Show that
 - (I) $A \subseteq B \Longrightarrow A^{\circ} \subseteq B^{\circ}$
 - (II) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
 - (III) $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$ and the inequality may be strict.
- (b) Attempt any Two of the following:

(12)

- (i) Prove or disprove: Let d_1, d_2 be equivalent metrics on a non-empty set X. If (x_n) is bounded in (X, d_1) then (x_n) is bounded in (X, d_2) .
- (ii) (\mathbb{Z},d) and (\mathbb{Z},d_1) are metric spaces where d is the usual metric (induced from \mathbb{R}) and d_1 is the discrete metric in \mathbb{Z} . Prove that d and d_1 are equivalent metrics.
- (iii) Let d_1, d_2 be metrics on X. Define $d: X \times X \longrightarrow \mathbb{R}$ as $d(x, y) = \max \{d_1(x, y), d_2(x, y)\}$. Show that d is a metric on X.
- (iv) $\| \|_1$ and $\| \|_2$ are norms on \mathbb{R}^2 where for $x = (x_1, x_2) \in \mathbb{R}^2$, $\|x\|_1 = \sum_{i=1}^{n-2} |x_i|$, $\|x\|_2 = \sum_{i=1}^{n-2} |x_i|$

$$\sqrt{\sum_{i=1}^{i=2} x_i^2}. \text{ Show that } ||x||_2 \le ||x||_1 \text{ and } ||x||_1 \le \sqrt{2} ||x||_2 \text{ for } x \in \mathbb{R}^2$$

(a) Attempt any One of the following:

(8)

- (i) Show that for a subset F of a metric space (X,d), the following statements are equivalent:
 - (I) F is closed
 - (II) F contains all its limit points.
- (ii) Let (X, d) be a metric space and A be a subset of X. Show that $p \in X$ is a limit point of A if and only if there is a sequence of distinct points in A converging to p.
- (b) Attempt any Two of the following:

(12)

- (i) Let $A, B \subset \mathbb{R}$ (distance being usual), where $A = \mathbb{N}$ and $B = \left\{ n + \frac{1}{n} : n \in \mathbb{N}, n > 1 \right\}$. Find d(A, B)
- (ii) Let A be a subset of a metric space (X, d). Prove that
 - (I) $(X \setminus A) = X \setminus A^{\circ}$
 - (II) $(X \setminus A)^{\circ} = X \setminus (\overline{A})$
- (iii) Show that $S=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$ is a closed subset of \mathbb{R}^2 , where the distance being Euclidean.
- (iv) Prove that a subset A of a metric space (X,d) is dense in X if and only if $G \cap A \neq \emptyset$ for each non-empty open subset G of X.

3. (a) Attempt any One of the following:

(8)

- (i) If $K \subseteq \mathbb{R}^n$ is such that K is compact then prove that K has Bolzano-Weierstrass Property. (distance being Euclidean).
- (ii) Show that a compact subset of (\mathbb{R}^n, d) where d Euclidean, is closed and bounded. Give an example to show that a closed and bounded subset of a metric space is not compact.
- (b) Attempt any two:

(12)

- (i) Prove that a subset of a discrete metric space is compact if and only if it is finite.
- (ii) (X, d) is a metric space and (x_n) is a sequence in X such that (x_n) converges to some point $p \in X$. If $S = \{x_n : n \in \mathbb{N}\} \cup \{p\}$ then show that S is compact by using the definition of compactness.
- (iii) Let A, B be compact subsets of (\mathbb{R}, d) , distance d being usual. Show that $A \times B$ is a compact subset of (\mathbb{R}^2, d') where d' is the Euclidean distance.
- (iv) Consider the metric space (\mathbb{R}, d) , where d is the usual distance. Show that $\{(\frac{1}{n}, 1) : n \in \mathbb{N}\}$ is an open cover of (0, 1). Is (0, 1) compact? Justify your answer.
- 4. Attempt any Three of the following:

(15)

- (a) Prove or disprove: If (X, d) be a metric space and $x, y \in X, r, s > 0$ and B(x, r) = B(y, s), then either x = y or r = s
- (b) Show that $\| \|$ is a norm on X, where $X = M_2(\mathbb{R})$ and $\|A\| = \max\{|a_{ij}| : 1 \le i, j \le 2\}$ for $A = (a_{ij}) \in X$
- (c) Let (X, d) be a discrete metric space and $A \subseteq X$. Then prove that $\overline{(A^{\circ})} = \overline{A}$
- (d) Consider the sequence (f_n) of functions in C[0,1] defined by

$$f_n(t) = \begin{cases} 0 & \text{if} & 0 \le t \le \frac{1}{2} - \frac{1}{n} \\ nt - \frac{n}{2} + 1 & \text{if} & \frac{1}{2} - \frac{1}{n} < t \le \frac{1}{2} \\ 1 & \text{if} & \frac{1}{2} < t \le 1 \end{cases}$$

Show that $\{f_n\}$ is Cauchy w.r.t. $\| \cdot \|_1$ where $\|f\|_1 = \int_0^1 |f(t)| dt$

- (e) Let $A = \{(x,y) \in \mathbb{R}^2 : |x| \le 1\}$. Determine whether A is compact. Justify your answer.
- (f) Prove or disprove :] A closed ball B[x, r] in a metric space is compact.