Marks:75 2½ Hours | Instructions: | All questions are compulsory. Figures to right Indicate full marks. Illustrations, in-depth answers and diagram will be appreciated. | | | | | | | |--------------------------------|--|------------------|--|--|--|--|--| | A) Multiple ch | e following cor | mmands will c | reate a list? 3]) d) All of these. | | | | | | ii) The dot pro
a) 2 b) -2 | duct of (1,3,1)
c) 1 d) Nor | | The Account of a service of the party of the factors and the service of the factors and the factors are the factors and the factors and the factors are fa | | | | | | iii) The dot pro | oduct of (0,1,4 |) & (1,2,3) is _ | | | | | | | a) -10 | b) 10 | c)12 | d) None of these. | | | | | | iv) A vector w
a) Null | whose norm is of b) basis | called | d) None of these. | | | | | | v) For any hor
a) zero | mogenous systemos b) nonzero | em | is a trivial solution d) None of these. | | | | | | B) Fill in the l | blanks | | | | | | | | | when we execu | ute list ("Hello | ") is | | | | | | ii) If diagonal | entry of squire | e matrix is one | & non-diagonal entry is zero then matrix is | | | | | | called. | | | | | | | | | | new element to | a list we use _ | command. | | | | | | | ute value of Hu | | | | | | | | v) Inverse of | a matrix is | | Control Principle Control | | | | | | version as | n cadigi | | Transport receive half-CF-CF-d (C, Co-grey, F. J. | | | | | | C) Answer th | e following qu | lestion. | | | | | | | 1) Define dot | product | | | | | | | | 2) Define din | nension | | | | | | | | 3) Find dot p | roduct of (1,5) | , (4,-2) | | | | | | | 4) Solve (1.1) + (0.1) + (0.1) | | | | | | | | | 5) Determine | the term chara | acteric equation | | | | | | | O 2 Attomat | tha | following | (Any The | reel | |-------------|-----|-----------|------------|------| | Q.2 Attempt | HIE | Tollowing | (Ally Illi | icc) | (15) - a) Find the squire root of complex number 7-4i - b) Determine whether $v_1 = (2,1,2)$, $v_2 = (0,1,3)$, $v_3 = (1,1,1)$ span vector space \mathbb{R}^3 - c) Write a python program to find conjugate of complex number. - d) Are the following vectors are linearly dependant? $v_1=(3,1,3), v_2=(2,4,6), v_3=(1,-1,6)$ - e) Express in polar and exponential form $1-i\sqrt{3}$ - f) Check whether the set of all pairs of real numbers of the form (1, x) with operation (1, y) + (1, y') = (1, y + y') and k(1, y) = (1, ky) is a vector space. ## Q.3 Attempt the following (Any Three) (15) - a) Find the angle between the two vectors a = (2,3,4), b = (1,-4,3) in \mathbb{R}^3 - b) Find null space in matrix $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ - c) Let $f: U \to V$ be linear transformation then show that $kerf = \{0\}$ iff f is injective. - d) Consider subspace $U_1 = \{(x, y, w, z)/x y = 0\}$ and $U_2 = \{(x, y, w, z): x = w_1 \text{ y=z} \}$ find basic & determination of i) U_1 ii) U_2 iii) U_2 iii) U_2 - e) Check whether the set of functions are linearly independent $2 x + 4x^2$, $3 + 6x + 2x^2$, $2f lox 4x^2$ - f) If V, W are two subsets of a vector space V such that U is a subset of W then show that W^0 is a subset of U^0 where U^0 , W^0 , are annihilator of U, W respectively. ## Q.4 Attempt the following (Any Three) (15) - a) Find orthonormal basis for subspace IR^4 whose generators are v_1 =(1,1,1,1), v_2 =(1,2,4,5), v_3 =(4-3,-4,-2) - b) Let a=(3,0),b=(2,1) find vector is span {a} that is closed to b is b''^a and distance $\|b \perp a\|$ - c) Find inner product, angle, orthogonality for $p = -5 + 2x x^2$, $q = 2 + 3x^2$ - d) Write program in python to find g.c.d(240,36) - e) Let u,v be orthogonal vectors then prove that scaler a,b $\|au + by\|^2 = a^2 \|u\|^2 + b^2 \|v\|^2$ - f) Explain internet worm. Q.5 Attempt any three of following. (15) - a) Let $T=IR^3 \rightarrow IR^2$ be linear map be defined by f(x,y,z)=(x+2y-z,x+y-2z) verify (Rank I +Nulity I=3). - b) Find eigen values & eigen vectors of $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 3 \end{bmatrix}$ - c) Let S be a subset of vector space V. prove that $S\bot$ is a subspace of V. - d) Express the following as linear combination of V_1 =(-2,1,3) V_2 =(3,1,-1) , V_3 =(-1,-2,1) with w=(6,-1,5). | e) Fill the table vector | space {0} | basic | dimension | |--------------------------|-----------------------|---------------|-----------| | | IR^2 | {(1,0),(0,1)} | | | | $P_2(x)$
$M_2(IR)$ | | 4 | | • | IR | {1} | |