(3 Hours) [Total Marks: 100]

- **Note:** (i) All questions are compulsory.
 - (ii) Figures to the right indicate marks for respective parts.
- 0.1Choose correct alternative in each of the following

(20)

- The order and degree of differential equation $y = x^2 \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^5}$ is i.
 - (a) 1 and 2

(b) 1 and 5

(c) 2 and 5

- (d) 5 and 5
- Orthogonal trajectories of the family of curves xy = k represents a family of ii.
 - **Parabolas** (a)

(b) Straight lines

Hyperbolas (c)

- (d) Circles
- The integrating factor of $\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^{tan^{-1}(x)}}{1+x^2}$ is

 (a) $\frac{1}{1+x^2}$ (b) $\frac{e^{tan^{-1}(x)}}{1+x^2}$ (c) $e^{tan^{-1}(x)}$ (d) None of these iii.

- Which of the following is an exact differential equation? iυ.
- $(x^2 + 1)dx xydy = 0$ (b) xdy + (3x 2y)dx = 0
 - $2xvdx + (x^2 + 2)dv = 0$ (d) $x^2vdv vdx = 0$ (c) 8
- Which of the following functions are linearly independent?

 - (a) $y_1 = 2x$; $y_2 = 1 x$ (b) $y_1 = logx$; $y_2 = logx^3$ (c) $y_1 = x$; $y_2 = x^2$ (d) $y_1 = x^2$; $y_2 = 5x^2$
- The general solution of 4y'' + 12y' + 9y = 0 is
 - (a) $c_1 e^{-\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$

- $c_1 + c_2 e^{-\frac{3}{2}x}$
- (c) $c_1 cos x + c_2 sin\left(-\frac{3}{2}x\right)$
- None of these
- vii. If $y_1(x) = \cos \pi x$ and $y_2(x) = \sin \pi x$, value of Wronskian $W(y_1, y_2)$ is
 - (a) π

(b) 2π

(c) 0

- (d) None of these
- The Wronskian of two solutions $(e^{2t}, 2e^{2t})$ and $(e^{3t}, 2e^{3t})$ of a homogeneous linear system of differential equations, is equal to

Paper / Subject Code: 78912 / Mathematics Paper III (Rev.)

(a) 0

(b) $4e^{5t}$

(c) $2e^{2t}$

- (d) None of these
- One of the solutions of the system $\frac{dx}{dt} = y x$, $\frac{dy}{dt} = 3x + y$ is ix.
 - (a) $x = 3e^{2t}, y = e^{2t}$ (b) $x = e^{2t}, y = 3e^{2t}$ (c) $x = e^{t}, y = 3e^{t}$ (d) None of these
- If (e^{4t}, e^{4t}) and $(e^{-2t}, -e^{-2t})$ are linearly independent solutions of $\frac{dx}{dt} = x + 3y$, $\frac{dy}{dt} = 3x + y$ then particular solution for which x(0) = 5,

- (a) $(3e^{4t} + 2e^{4t}, 3e^{-2t} 2e^{-2t})$ (b) $(4e^{4t} + e^{4t}, 4e^{-2t} 3e^{-2t})$ (c) $(3e^{4t} + 2e^{-2t}, -2e^{4t} + e^{-2t})$ (d) $(3e^{4t} + 2e^{-2t}, 3e^{4t} 2e^{-2t})$
- Q2. Attempt any **ONE** question from the following:

(80)

- When a differential equation M(x,y)dx + N(x,y)dy = 0 is said to be a) i. exact? State and prove the necessary and sufficient condition for the above differential equation to be exact.
 - Obtain a method to solve the Bernoulli's differential equation ii. $\frac{dy}{dx} + P(x)y = Q(x)y^n (n \neq 0,1)$ where P(x), Q(x) are functions of x and hence solve $\frac{dy}{dx} - ytanx = sin(x)cos^2(x)y^2$.
- Attempt any TWO questions from the following: 0.2

(12)

When a differential equation M(x, y)dx + N(x, y)dy = 0 is said to be *b*) homogeneous? Solve the homogenous differential equation

$$x\frac{dy}{dx} - y = \sqrt{x^2 - y^2}.$$

- ii. The population of a village increases at a rate proportional to the population at that time. In a period of 10 years, the population grew from 10 thousand to 15 thousand. What will be the population after 20 years? $(ln1.5 = 0.405, e^{0.81} = 2.248)$
- Find the solution to the differential equation Hi. $3x^2y^2dx + 4(x^3y - 3)dy = 0$
- Solve $(1 + y^2)dx = (tan^{-1}(y) x)dy$ iv.

Q3. Attempt any **ONE** question from the following: (80)

- Show that a second order homogenous differential equation y'' +a) i. P(x)y' + Q(x)y = 0 is completely determined by two linearly independent solutions $y_1(x)$ and $y_2(x)$. However, the converse is not true, that is $y_1(x)$ and $y_2(x)$ are not uniquely determined by the differential equation.
 - Let y'' + ay' + b = 0 be a homogeneous differential equation with ii. constant coefficients and let $m^2 + am + b = 0$ be the corresponding auxiliary equation with roots m_1 and m_2 . Discuss the general solution of the differential equation when:
 - $(p)m_1$ and m_2 are real and equal $(q)m_1$ and m_2 are complex.
- Q3. Attempt any **TWO** questions from the following: (12)
 - Show that $y = ax^2 + bx + 3$ is the general solution of *b*) i. $x^2y'' - 2xy' + 2y = 6$. Further find a particular solution of this differential equation satisfying y(1) = 0, y'(1) = 1.
 - Check whether the following functions are linearly dependent (on any ii. interval not containing 0) by finding their Wronskian.

(p)
$$y_1 = x^2$$
; $y_2 = \sqrt{x}$ (q) $y_1 = x^4$; $y_2 = x^4 log x$

- Using method of variation of parameters find a particular integral of the iii. differential equation y'' + y = secx.
- Solve the differential equation $y'' + 3y' 10y = 6e^{4x}$, by the method iv. of undetermined coefficients.
- Attempt any **ONE** question from the following: (80)Q4.
 - Find the general solution of system $\begin{cases} \frac{dx}{dt} = a_1x + b_1y \\ \frac{dy}{dt} = a_2x + b_2y \end{cases}$ where a) 1

 a_1 , a_2 , b_1 and b_2 are constants when the roots of auxiliary equation are complex.

ii.

Define Wronskian
$$W(t)$$
 of the two solutions $\begin{cases} x = x_1(t) \\ y = y_1(t) \end{cases}$ and $\begin{cases} x = x_2(t) \\ y = y_2(t) \end{cases}$ of the homogeneous system $\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y \\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$

where $a_1(t)$, $a_2(t)$, $b_1(t)$, $b_2(t)$ are continuous functions on [a, b]. Show that their Wronskian is either identically zero or nowhere zero on [a, b].

Q4. Attempt any **TWO** questions from the following:

(12)

- b) i. Show that $x = e^{3t}$, $y = e^{3t}$ and $x = e^{2t}$, $y = 2e^{2t}$ are linearly independent solutions to the homogeneous system $\frac{dx}{dt} = 4x y$, $\frac{dy}{dt} = 2x + y$. Hence find the general solution.
 - ii. Find the general solution to the following system $\frac{dx}{dt} = 7x + 6y$, $\frac{dy}{dt} = 2x + 6y$.
 - iii. Find the particular solution to the following system $\frac{dx}{dt} = 2x 8y$, $\frac{dy}{dt} = x + 6y$ with x(0) = 4, y(0) = 1.
 - iv. Let $\begin{cases} x = x_1(t) \\ y = y_1(t) \end{cases}$ and $\begin{cases} x = x_2(t) \\ y = y_2(t) \end{cases}$ of the homogeneous system $\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y \\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$ where $a_1(t), a_2(t), b_1(t), b_2(t)$ are continuous functions on [a, b]. Then $\begin{cases} x(t) = c_1x_1(t) + c_2x_2(t) \\ y(t) = c_1y_1(t) + c_2y_2(t) \end{cases}$, is also a solution of the above system of equation for $t \in [a, b]$
- Q5. Attempt any **FOUR** questions from the following: (20)
 - a) Solve the differential equation (4x + 3y + 1)dx + (3x + 2y + 1)dy = 0
- b) Find the orthogonal trajectories of $y = ke^x$ where k is a parameter.
- c) Solve y'' 4y' + 4y = 0.
- d) Find another linearly independent solution for the differential equation $(1+x^2)y''-2xy'+2y=0$, given that $y_1=x$ is a solution.
- Show that $x = e^{3t}$, $y = e^{3t}$ and $x = e^{-t}$, $y = -e^{-t}$ are solutions of the system $\begin{cases} \frac{dx}{dt} = x + 2y \\ \frac{dy}{dt} = 2x + y \end{cases}$
- f) Define a system of homogeneous linear differential equations of order 1. State the condition for two solutions (x_1, y_1) and (x_2, y_2) to be linearly independent. Also write the general solution.
