		>
(3 Hours)	[Total Marks: 100]	,

- **Note:** (i) All questions are compulsory.
 - (ii) Figures to the right indicate marks for respective parts.
- Q.1 Choose correct alternative in each of the following

(20)

- i. Let $a, b \in D_3$, where a and b denotes rotation and reflection then |ab| =
 - (a) 2

(b) 3

(c) 6

- (d) None of the above
- ii. Let H and K be the subgroups of a group G. Then $H \cup K$
 - (a) Is always a subgroup of G
 - (b) Is never a subgroup of G
 - (c) Is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$
 - (d) None of the above
- iii. The set \mathbb{Z}_n forms a group under the binary operation
 - (a) '+'

(b) '-'

(c) ·•

- (d) None of the above
- *iv*. In the group $(\mathbb{Z}_{18}, +)$, order of $\overline{10}$ is
 - (a) 10

(b) 9

(c) 6

- (d) 18
- v. Let H is a proper subgroup of \mathbb{Z} under addition and 12, 14, 18 \in H then
 - (a) $H = 756\mathbb{Z}$

(b) $H = 2\mathbb{Z}$

(c) $H = 4\mathbb{Z}$

(d) $H = \mathbb{Z}$

66041

vi.	Let a be an element of a group G and let order of a in G be infinite then how					
	many generators does the group $< a >$ have?					
	(a)	Only one	(b)	Exactly 2		
	(c)	Infinitely many	(d)	None		
				9 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
vii.	If $G = (\mathbb{Z}, +)$ and $H = \{0, \pm 3, \pm 6, \pm 9, \dots \}$ then					
	(a)	11 + H = 17 + H	(b)	11 + H = 7 + H		
	(c)	7 + H = 23 + H	(d)	None of these		
viii.	Let G be a group of order 8 then G must have an element of order					
	(a)	2	(b)			
	(c)	8	(d)	None of these		
ix.	Let $\phi: \mathbb{C}^* \to \mathbb{C}^*$ given by $\phi(x) = x^4$ be a homomorphism then $\ker \phi =$					
	(a)	{1,-1}	(b)	$\{1,-1,i,-i\}$		
	(c)	$\{i,-i\}$	(d)	None of these		
x.	Let	G be an abelian group which	h has	s no element of order 2 and $\phi: G \to G$		
	given by $\phi(x) = x^2$, then					
	(a)	ϕ is an automorphism.		\$\frac{1}{2}\display \qu		
	(b) ϕ is a group homomorphism which may not be one —one.					
	(c) ϕ is an automorphism if G is finite.					
	(d) ϕ is not a group homomorphism.					
Q2.	Attempt any ONE question from the following: (08)					
a)	1.0	Show that $U(n) = \{ \overline{a} \in \mathbb{Z}_n \mid 1 \le n \le$	$\leq a \leq n$	n-1,(a,n)=1, form a group under the		
	binary operation '•'					
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				
300 P	ii.	Define Centre of Group G.	Hen	ce or otherwise prove that the Centre of		

66041

any group is a subgroup of the group.

Q.2 Attempt any **TWO** questions from the following:

- (12)
- b) i. Let G be a group. Prove that $(aba^{-1})^n = ab^na^{-1}$, $\forall a,b \in G$ and $\forall n \in \mathbb{Z}$
 - ii. Let G be a group and $a \in G$. Show that $H = \{a^{2n} | n \in \mathbb{Z}\}$ is a subgroup of G.
 - iii. Let G be a group and $a \in G$ with O(a) = n then show that if and only if $a^m = e$ then n|m.
 - iv. Let $\alpha = (1\ 2\ 5)(6\ 13\ 5)$ and $\beta = (1\ 3\ 4)(2\ 6\ 5)(2\ 3\ 4)$. Write α and β as a product of disjoint cycles. Further, verify the following.
 - $p) o(\alpha) = o(\alpha^{-1})$
 - q) $o(\alpha\beta) = o(\beta\alpha)$
 - r) $o(\alpha\beta\alpha^{-1}) = o(\beta)$
- Q3. Attempt any **ONE** question from the following: (08)
- a) i. Prove that \mathbb{Z}_n the set of residue classes modulo n is a group under addition. Also determine all the generators for \mathbb{Z}_n
 - ii. Let G be a finite cyclic group of order n then prove that G has a unique subgroup of order d for every divisor d of n.
- Q3. Attempt any **TWO** questions from the following: (12)
- b) i. Let $G = \langle a \rangle$ be a finite cyclic group of order 12 then what are all the generators of G. Also determine all the generators of the subgroup $H = \langle a^3 \rangle$.
 - ii. Determine all the subgroups of the cyclic group \mathbb{Z}_{11}^* .
 - iii. Show that $H = \{\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} / n \in \mathbb{Z} \}$ is a cyclic subgroup of $GL_2(\mathbb{R})$.

66041

- iv. Consider the set $\{\overline{4}, \overline{8}, \overline{12}, \overline{16}\}$. Show that this set is a group under multiplication modulo 20 by constructing a Cayley table. What is the identity element?
- Q4. Attempt any **ONE** question from the following: (08)
- a) i. Let H is a subgroup of a group G then aH = H if and only if $a \in H$. Further aH is subgroup of G if and only if $a \in H$.
 - ii. Let $f: G \to G'$ is onto group homomorphism. Prove that
 - (p) If H is subgroup of G then $f(H) = \{f(h)/h \in H\}$ is subgroup of G'.
 - (q) If H' is subgroup of G' then $f^{-1}(H') = \{a \in G/f(a) \in H'\}$ is subgroup of G and $kerf \subseteq f^{-1}(H')$.
- Q4. Attempt any **TWO** questions from the following: (12)
- b) i. State Lagrange's theorem for finite group. If H and K are subgroups of G such that o(H) = 12 and o(K) = 35 then show that $H \cap K = \{e\}$.
 - ii. Let G be a finite group then show that
 - (p) o(a)|o(G), $\forall a \in G$ (q) $a^{o(G)} = e$, $\forall a \in G$
 - iii. Show that $f: G \to G$ given by $f(x) = x^{-1}$ is a automorphism if and only if G is abelian.
 - iv. Show that $G = \{a + b\sqrt{2} / a, b \in \mathbb{Q}\}$ and $H = \{\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} / a, b \in \mathbb{Q}\}$ are isomorphic groups under addition.
- Q5. Attempt any **FOUR** questions from the following: (20)
- a) Construct composition table of \mathbb{Z}_5^* under multiplication modulo 5. Also find the order of each of its elements.
- b) Define Abelian group. If $(ab)^2 = a^2b^2$ for every a, b in a group G, show that G is Abelian.

66041 Page 4 of 5

- c) Prove that a group of order 3 must be cyclic.
- d) Let G be a group and let 'a' be an element of G.
 - (i) If $a^{12} = e$, what can you say about order of a.
 - (ii) Suppose that G is cyclic and o(G) = 24. Further if $a^8 \neq e$ and $a^{12} \neq e$ then show that $\langle a \rangle = G$.
- e) Give an example of a group G and a subgroup H of G such that aH = bH but $Ha \neq Hb$ for some $a, b \in G$.
- f) Find the number of group homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{30} .
