(3 Hours)	[Total Marks: 100]
()	

Note: (i) **All** questions are **compulsory**.

- (ii) Figures to the right indicate marks for respective parts.
- Q.1 Choose correct alternative in each of the following:

(20)

- If $f: [a, b] \to IR$ be bounded function and P, Q be partitions of [a, b] then
 - (a) $L(P,f) \le U(Q,f)$
- (b) $L(P,f) \ge U(Q,f)$
- (c) L(P,f) = U(Q,f)
- (d) None of the above
- The norm of a partition $P = \{0 < \frac{1}{2} < 1 < \frac{4}{3} < \frac{7}{3} < 3\}$ is ii.
 - $\frac{1}{3}$ (a)

(c) 1

- (d) None of the above
- If $f: [a, b] \rightarrow IR$ is R- integrable then which of the following is true iii.
 - (a) f must be continuous
- (b) f must be differentiable
- (c) f must be monotonic
- (d) None of the above
- Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $\int_{-a}^{a} f(t)dt = 0, \forall a > 0$ if and only if iv.

- (b) f is an odd function
- (c) $f \neq 0$ for only finitely many (d) None of the above.

real numbers.

- If $f, g: [a, b] \to \mathbb{R}$ are continuous functions such that $\int_a^b f(x) dx = \int_a^b g(x) dx$ then
 - (a) $f \equiv g \text{ on } [a, b]$
- (b) f(x) = g(x) is a constant.
- (c) $\exists c \in [a, b]$ such that
- (d) None of the above.

$$f(c) = g(c)$$

- The type 2 integral $\int_0^2 \frac{1}{x-1} dx$
 - (a) Diverges

- (b) Converge to 0
- (c) Converge to $\frac{1}{2} \ln 3$
- (d) Converges to $\frac{8}{9}$

Integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if vii.

(a) p > 1

(b) p < 1

(c) p = 1

None of the above (d)

Find $\int_0^{\frac{\pi}{2}} \cos^{11} x \sin^9 x \, dx$

(a)

(b)

(c)

(d)

 $\int_0^\infty x^{3/2} e^{-x} dx =$ ix.

(d) None of these

Identify the definite integral that computes the volume of the solid generated by X. revolving the region bounded by the graph of $y = x^3$ and the line y = x, between x = 0 and x = 1 about the line x = 1.

- (a) $\pi \int_{0}^{1} \left(y^{\frac{2}{3}} y^{2}\right) dy$ (c) $2\pi \int_{0}^{1} (4 x^{2})(4 x^{6}) dx$
- (b) $\pi \int_{0}^{1} \left(y^{\frac{1}{3}} y\right)^{2} dy$ (d) $\pi \int_{0}^{1} \left(4 y\right)^{2} (4 y^{\frac{1}{3}})^{2} dx$

Attempt any **ONE** question from the following: Q2.

(08)

- Let $f:[a,b] \to IR$ be a bounded function. Prove that f is Riemann integrable on a) [a, b] if and only if for any $\in > 0$ there exist a partition P of [a, b] such that $U(f,P) - L(f,P) < \in$.
 - If f; g: $[a,b] \rightarrow IR$ are R- integrable then prove that f+g is R- integrable and $\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$

Q.2 Attempt any **TWO** questions from the following:

- (12)
- b) i. Let f be a bounded function on [a, b]. Let P and P' are two partitions of [a, b] with $P \subseteq P'$. Show that $L(P', f) \ge L(P, f)$
 - ii. If f is an R-integrable function on [a, b] then prove that |f| is R-integrable on [a, b].
 - iii. Using Riemann Criterion, prove that the function $f : [0, 1] \to \mathbb{R}$ defined by f(x) = x is Riemann integrable.
 - iv. If $f, g : [a, b] \to \mathbb{R}$ are integrable functions such that $f(x) \le g(x)$, $\forall x \in [a, b]$ then prove that $\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$.
- Q3. Attempt any **ONE** question from the following:

(08)

- a) i. State and prove the Fundamental Theorem of Calculus.
 - ii. State and prove Comparison Test for improper integrals of type-I.
- Q3. Attempt any **TWO** questions from the following:

(12)

b) i. Let $F: [0,1] \to \mathbb{R}$ be defined by $F(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x}\right) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}$

Show that is differentiable over [0, 1].Let $f : [0, 1] \to \mathbb{R}$ be given by

$$f(x) = F'(x)$$
. Find $\int_0^1 f(t)dt$

- ii. Evaluate $\lim_{x \to \infty} \frac{1}{x^3} \int_0^x \frac{t^2}{1+t^4} dt$
- iii. Prove that $\int_a^b \frac{1}{(b-x)^p} dx$ converges if and only if p < 1.
- iv. State Abel's and Dirichlet's Tests for the conditional convergence of type 1 improper integral and discuss convergence of $I = \int_0^\infty \sin x^2 dx$
- Q4. Attempt any **ONE** question from the following:

(08)

- a) i. Prove that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ converges if and only if m and n are both positive.
 - ii. With usual notations for beta and gamma functions prove that

(p)
$$\beta(m,n) = \beta(n,m)$$

$$(q)\frac{\beta(m,n+1)}{n} = \frac{\beta(m+1,n)}{m} = \frac{\beta(m,n)}{m+n}.$$

66047

- Q4. Attempt any **TWO** questions from the following: (12)
- b) i. Prove that $\beta(m,n) = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dy$.
 - ii. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
 - iii. Find the volume of the solid whose base is the disk $x^2 + y^2 \le 1$ and the cross sections by the planes perpendicular to the y axis between y = -1 and y = 1 are isosceles right triangles with one leg in disk by the method of slicing.
 - iv. Find the volume of the solid generated by revolving the regions bounded by the lines y = 2x, y = x, x = 1 and about x axis by the Washer method.
- Q5. Attempt any **FOUR** questions from the following: (20)
 - a) If f(x) = 1 + 2x, $x \in IR$ and P be a partition such that 0 < 0.25 < 0.5 < 0.75 < 1, then find U(P, f).
- b) If f is Riemann integrable on [a, b] then for any $k \in IR$ prove that kf is also Riemann integrable on [a, b].
- c) Show that if F'(x) = 0, $\forall x \in [a, b]$ then f is a constant function.
- d) Identify the type and discuss the convergence of each of the following integrals

(I)
$$\int_0^1 \frac{dx}{x^2(1+x)^3}$$
 (II) $\int_1^\infty \frac{\sin^2 x}{x^2} dx$

- e) Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} \ dx \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\cos x}} \ dx = \pi.$
- f) Find the area of the surface generated by revolving the curves about $x = 2\sqrt{4 y}$, $0 \le y \le \frac{15}{4}$ about y -axis.

66047