Paper / Subject Code: 79555 / Mathematics : Paper II (Rev.)

(3 Hours) [Total Marks: 100]

Note: (i) All questions are compulsory.

- (ii) Figures to the right indicate marks for respective parts.
- Q.1 Choose correct alternative in each of the following

(20)

- i. The set $S = \{(x, y) \in \mathbb{R}^2 / 0 \le x^2 + y^2 \le 3\}$ is
 - (a) a closed set.

(b) open as well as closed set.

(c) an open set.

- (d) None of these.
- ii. Let $g: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) = \begin{cases} \frac{x^2 - 4y^2}{x - 2y} & \text{if } x \neq 2y\\ g(x,y) & \text{if } x = 2y \end{cases}$$

And if f is continuous on the whole plane, then g(x, y) is

(a) 2xy

(b) x

(c) 4y

- (d) None of these
- iii. $f(x,y) = 100 x^2 + y^2$. Then the direction along which the directional derivative of f at (5,6) is 0, is
 - (a) (-10, 12)

(b) (12,10)

(c) (2,2)

- (d) None of these
- iv. Let A: Total derivative is a linear transformation.
 - B: Every differentiable scalar field is continuous.

Then which of the following is true?

- (a) A is true, B is false.
- (b) A is false, B is true.
- (c) Both A & B are true.
- (d) Both A & B are false.
- v. If f(x,y) = |xy|, $\forall (x,y) \in \mathbb{R}^2$ then
 - (a) f is differentiable at (0,0).
- (b) f is continuous at (0,0) and $D_u f(0,0)$ exist for any vector u.
- (c) The partial derivatives f_x , f_y
- (d) None of these.

does not exist at (0,0).

Paper / Subject Code: 79555 / Mathematics : Paper II (Rev.)

vi. If $f: \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function such that $\frac{\partial f}{\partial v} = 0$, then

- (a) f is independent of x and z.
- (b) f depends on x and z only.

(c) f is constant.

(d) None of these.

vii. Which of the following is the level set of $f(x, y, z) = x^2 + y^2 + z^2$ for k = 1?

- (a) Sphere of radius 1 centered at origin.
- (b) Circle of radius 1 centered at origin.
- (c) Sphere of radius 2 centered at origin.
- (d) Sphere of radius 1 centered at (1,0,0).

viii. If $u(x,y) = x^2 + y^2$, $x = r + e^s$, y = log(s) then $\frac{\partial u}{\partial r}$ is

(a) $r + e^s$

(b) $2r + 2e^s$

(c) r

(d) e^s

ix. A critical point of the function $f(x,y) = x^2y - x - y$ is

(a) (1, 1)

(b) $(1, \frac{1}{2})$

(c) $\left(1, -\frac{1}{2}\right)$

(d) None of these

x. Saddle point is a point where

(a) the function has maximum value.

the function has minimum value.

- (c) the function has zero value.
- (d) the function has neither maximum nor minimum value.

Q2. Attempt any **ONE** question from the following:

(08)

a) i. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a real valued function. Let $l \in \mathbb{R}$ such that

 $\lim_{(x,y)\to(a,b)} f(x,y) = l.$ Also assume that the one dimensional limits

(b)

 $\lim_{x \to a} f(x, y)$ and $\lim_{y \to b} f(x, y)$ exists, then prove that

$$\lim_{x \to a} \lim_{y \to b} f(x,y) = \lim_{y \to b} \lim_{x \to a} f(x,y) = l.$$

54578

ii. If $\langle x_n \rangle$ and $\langle y_n \rangle$ are convergent sequences in \mathbb{R}^n and α , β are real constant, show that $\langle \alpha x_n + \beta y_n \rangle$ is also convergent in \mathbb{R}^n and

$$\lim_{n\to\infty}\alpha x_n + \beta y_n = \alpha \lim_{n\to\infty} x_n + \beta \lim_{n\to\infty} y_n.$$

Q.2 Attempt any **TWO** questions from the following:

- (12)
- b) i. Using $\epsilon \delta$ definition show that f is continuous at (0,0), where

$$f(x,y) = \begin{cases} x^{\frac{4}{3}} \sin\left(\frac{1}{x}\right) + y^{\frac{4}{3}} \sin\left(\frac{1}{y}\right) & \text{if } xy \neq 0\\ 0 & \text{if } xy = 0 \end{cases}$$

- ii. Prove that every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n .
- iii. Let $f: \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Define $D_i f(a)$, the *i*-th partial derivative of f at a, $1 \le i \le n$. Determine whether the partial derivatives of f exist at (0,0) for the following function. In case they exist, find them.

$$f(x,y) = \|(x,y)\|^4$$

- iv. Let $f: \mathbb{R}^2 \to \mathbb{R}$, a = (-1,2), u = (3,-4), v = (12,5) and w = (15,1). If $D_u f(a) = 8$, $D_v f(a) = 1$ find $D_w f(a)$.
- Q3. Attempt any **ONE** question from the following:

(08)

- a) i. Let U be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}$ be differentiable at $a \in U$. Prove that $D_i f(a)$ exists for each $i = 1, 2, \dots, n$. Explain with an example that converse of this is not true.
 - ii. State and prove sufficient condition for the equality of mixed partial derivatives.
- Q3. Attempt any **TWO** questions from the following:

(12)

- b) i. Find total derivative as linear transformation T for the function $f(x,y) = x^2 + 2xy + y^2 \text{ at the point } a = (-1,-2).$
 - ii. Find directional derivative of $f(x, y) = x^2 3xy$ along the parabola $y = x^2 x + 2$ at (1,2).
 - iii. Find the equation of the tangent plane and normal line to the surface $x^3 + 7x^2z + z^3 = 4$ at (2,1,-2).

54578

- iv. Evaluate the total derivative of $z = 4x^3y + 7x^2y^3$ where $x = 4 + 4t^4$ and $y = 1 2t^2$, using chain rule.
- Q4. Attempt any **ONE** question from the following: (08)
 - a) i. State and prove Taylor's Theorem for a real valued function of two variables.
 - ii. Let $Q(x,y) = Ax^2 + 2Bxy + Cy^2$ be a function of two variables and $\Delta = AC B^2$. Then prove that
 - (1) if $\Delta > 0$ and A > 0 then $Q(x, y) > 0 \ \forall (x, y) \in \mathbb{R}^2$, $(x, y) \neq (0, 0)$.
 - (2) if $\Delta > 0$ and A < 0 then $Q(x,y) < 0 \ \forall (x,y) \in \mathbb{R}^2$, $(x,y) \neq (0,0)$. if $\Delta < 0$, then in every open ball around origin there exist points (x,y) such that Q(x,y) < 0 and there exist points (x,y) such that Q(x,y) > 0.
- Q4. Attempt any **TWO** questions from the following: (12)
 - b) i. Given z = f(x, y) where f has continuous partial derivatives of second order, x = u + v, y = u v, show that $\frac{\partial^2 z}{\partial u \partial v} = \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2}$
 - ii. a) If f(x, y, z) = xi + yj + zk then prove that the Jacobian matrix Df(x, y, z) is the identity matrix of order 3.
 - b) Find all differentiable vector fields $f: \mathbb{R}^3 \to \mathbb{R}^3$ for which the Jacobian matrix Df(x,y,z) is a diagonal matrix of form diag(p(x),q(y),r(z)) where p,q,r are given continuous functions.
 - iii. Find the critical points, saddle points and local extrema if any for the function $f(x,y) = x^3 + xy^2 12x^2 2y^2 + 21x.$
 - iv. Find the points on the surface $z^2 = xy + 1$ nearest to the origin. Also find the distance.
- Q5. Attempt any **FOUR** questions from the following: (20)
- a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \lim_{(x, y) \to (0, 0)} \frac{e^{-\left(\frac{1}{x^2 + y^2}\right)}}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$. Define f(0, 0) so that f is continuous at origin.

54578

- b) Find the real value of $\theta \in (0,1)$ if it exists, satisfying $f(b) f(a) = \langle \nabla f(a + \theta(b a)), b a \rangle$ for the following function at the given points. $f(x,y,z) = x^2 + y^2 + 2xz, \ a = (0,0,0), \ b = \left(1,\frac{1}{2},\frac{1}{3}\right).$
- c) Find level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$ for the constants K = 1.9.
- d) Let $f(x,y) = x^2y^3 + 2y^5$, find f_x , f_y , f_{xy} , f_{xx} , f_{yy} .
- e) Using Taylor's formula find the quadratic approximation for the quantities $(0.99)^3 + (2.01)^3 6(0.99)(2.01)$.
- f) Find the Hessian matrix of $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = x^3 + y^3 + z^3 + 3xyz + 3x^2y + 3y^2x + 3z^2x + 3x^2z \text{ at } (1, 1, 1).$