Paper / Subject Code: 79555/ Mathematics: Paper 11 (Rev.)

(3 Hours) [Total Marks: 100]

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective parts.

Q.1  Choose correct alternative in each of the following (20)
i. Theset S={(x,y)ER? /0 < x2+ y? <3} is
(@ aclosed set. (b) open as well as closed set.
(c) anopen set. (d) None of these.
ii. Letg: R? - R defined as
2 _ 2 .
fen =z P
9gxy)  ifx=2y
And if f is continuous on the whole plane, then g(x,y) is
(@ 2xy (b) x
(c) 4y (d)  None of these
iii. f(x,y) =100 —x? + y2 Then the direction along which the directional derivative of f at
(5,6)is 0, is
(@) (—10,12) (b) (12,10)
© (22 (d)  None of these
iv. Let A: Total derivative is a linear transformation.
B: Every differentiable scalar field is continuous.
Then which of the following is true?
(@ Adistrue, B is false. (b) Aisfalse, B is true.
(c) Both A & B are true. (d) Both A & B are false.
v. If f(x,y) = |xyl|,V(x,y) € R? then
(@) f is differentiable at (0,0). (b) fis continuous at (0,0) and D,,f(0,0) exist
for any vector u.
(c)  The partial derivatives f,, f,, (d) None of these.
does not exist at (0,0).
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Vi. |f f:R3 - Ris a differentiable function such that g-i = 0 ,then

(@ fisindependent of x and z. (b) f depends on x and z only.

(c) f isconstant. (d) None of these.

vii. Which of the following is the level set of f(x,y,z) = x? + y? + z% for k = 1?
(@) Sphere of radius 1 centered at (b) Circle of radius 1 centered at origin.
origin.
(c) Sphere of radius 2 centered at (d) Sphere of radius 1 centered at (1,0,0).

origin.

Vil f u(x,y) = x> + y%, x = r + €%, y = log(s) then Z_: is
@ r4es (b) 2r + 29
(C) r (d) e

ix. A critical point of the function f(x,y) = x%y — x — yis
@ (LD () (1.2)

() (1,—%) (d) None of these

x.  Saddle point is a point where

(@)  the function has maximum ®) the function has minimum value.
value.
(c) the function has zero value. 0 the function has neither maximum nor

minimum value.

Q2.  Attempt any ONE question from the following:

a) I Let f: R? > R be a real valued function. Let [ € R such that
lim . . -
AN f(x,y) = L. Also assume that the one dimensional limits

lim
X —

lim lim _ lm  lim _
x_)ay_)bf(X,y)—y_)bx_)af(x;y)—l-

lim .
af(x, y) and y b f(x,y) exists, then prove that
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ii.  If (x,,) and (y,,) are convergent sequences in R™and «, § are real constant, show that

(ax, + Byy,) is also convergent in R™and

lim ax, + fy, =a lim x, + f lim y,.
n—»,oo n—»,oo n—.oo

Q.2  Attempt any TWO questions from the following: (12)
b) i.  Using € — ¢ definition show that f is continuous at (0,0), where
4 1 4 1 .
flxy) = x3 sin (—) + y3sin (—) if xy #0
’ % 2 Y ifxy=0
ii.  Prove that every linear transformation 7: R™ — R™ is continuous on R™.
iii. Letf:R™ - R and a € R". Define D, f(a), the i-th partial derivative of f at a,
1 < i < n. Determine whether the partial derivatives of f exist at (0, 0) for the
following function. In case they exist, find them.
fGy) =G I*
iv. Letf:R?->R,a=(-12),u=(3,-4),v=(12,5)andw = (15,1).
If D,f(a) =8, D,f(a) =1 find D, f(a).
Q3.  Attempt any ONE question from the following: (08)
a) i. LetU beanopensetinR™and f:U — R be differentiable at a € U. Prove that
D; f (a) exists foreach i = 1,2, .....,n. Explain with an example that converse of this
IS not true.
ii. ~ State and prove sufficient condition for the equality of mixed partial derivatives.
Q3.  Attempt any TWO questions from the following: (12)
b) i.  Find total derivative as linear transformation T for the function
f(x,y) = x?> + 2xy + y? at the point a = (—1,-2).
ii. ~ Find directional derivative of f(x,y) = x? — 3xy along the parabola
y=x%—x+2 at(1,2).
iii.  Find the equation of the tangent plane and normal line to the surface
x3+7x%z+z3 =4at(2,1,-2).
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iv.  Evaluate the total derivative of z = 4x3y + 7x%y> where x = 4 + 4t* and

y = 1 — 2t?, using chain rule.

Attempt any ONE question from the following: (08)

i.  State and prove Taylor’s Theorem for a real valued function of two variables.

ii. LetQ(x,y) = Ax? + 2Bxy + Cy? be a function of two variables and
A= AC — B?. Then prove that
(1) if A>0andA > 0then Q(x,y) >0V (x,y) € R? (x,y) = (0,0).
(2) if A>0andA < 0then Q(x,y) <0V (x,y) € R?, (x,y) # (0,0).
if A< 0, then inevery open ball around origin there exist points (x, y) such that

Q(x,y) < 0 and there exist points (x, y) such that Q(x, y) > 0.

Attempt any TWO questions from the following: (12)

i. Givenz = f(x,y) where f has continuous partial derivatives of second order,

0%z 9%z 9%z

x:u+v,y:u—v,showthat 3000 2x2 a_yz

.  a)lff(x,y,z) = xi + yj + zk then prove that the Jacobian matrix Df (x,y, z) is
the identity matrix of order 3.
b) Find all differentiable vector fields f: R®> — R3 for which the Jacobian matrix
Df (x,y,z) is a diagonal matrix of form diag (p(x), q(y),r(z)) where p, q, r are
given continuous functions.

iii.  Find the critical points, saddle points and local extrema if any for the function
flx,y) = x3 + xy? — 12x% — 2y% + 21x.

iv.  Find the points on the surface z2 = xy + 1 nearest to the origin. Also find the

distance.

Attempt any FOUR questions from the following: (20)

(1
e \x2+y?

. R2 - = —
Let f: R? > R be defined by f(x,y) = (x’yl)lgr% 00) FHy?

if (x,y) # (0,0).

Define £(0,0) so that f is continuous at origin.
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b)  Find the real value of 8 € (0, 1) if it exists, satisfying
f(b) —f(a) =<Vf(a+0(b—a)),b—a>
for the following function at the given points.
f(x,y,z) =x*+y%*+2xz, a=(0,0,0), b= (1,%%).
¢)  Find level surfaces of f(x,y,z) = x? + y? + z? for the constants K = 1,9.
d) Let f(x'Y) = x2y3 + 2}’5, flnd f;c; fy' f;cy; fxx: fyy-
e) Using Taylor’s formula find the quadratic approximation for the quantities
(0.99)% + (2.01)3 — 6(0.99)(2.01).
f)  Find the Hessian matrix of f: R3 - R given by
fx,v,z) = x3 +y3+ 23 + 3xyz + 3x%y + 3y?x + 3z%x + 3x%z at (1,1,1).
. 2 2
54578 Page 5 of 5

ESA26F2A2AD14C7F1ABBC6D068DASEGC



