(3 Hours)

[Total Marks: 100]

Note: (i) All questions are compulsory.

- (ii) Figures to the right indicate marks for respective parts.
- Choose correct alternative in each of the following **Q**.1

(20)

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation if $\forall u, v \in \mathbb{R}^2, \forall \alpha, \beta \in \mathbb{R}$,
 - (a) $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ (b) $T(\alpha uv) = \alpha T(u) \cdot T(v)$
 - (c) $T(\alpha u + \beta v) = \alpha T(u) \cdot \beta T(v)$ (d) None of the above
- If $T: U \to V$ is a linear transformation then ii.
 - T(0) = 0a

- (b) $T(-u) = -T(u), \forall u \in U$
- $T(u_1 u_2) = T(u_1) T(u_2)$ (d) All of the above $\forall u_1, u_2 \in U$
- Which of the following is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 ? iii.
 - (a) T(x,y)=(xy,y)

- (b) T(x,y)=(x+1, y+1)
- (c) T(x,y)=(x + y, x y)
- (d) All the above
- If $\mathbf{A} = \begin{pmatrix} 4 & -1 \\ 2 & -2 \end{pmatrix}$ and $\mathbf{E}\mathbf{A} = \begin{pmatrix} 0 & 3 \\ 2 & -2 \end{pmatrix}$, then \mathbf{E} is given by

 (a) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -2 \\ -1 & 0 \end{pmatrix}$

 $\begin{array}{ccc}
-2 \\
\text{(b)} & \begin{pmatrix} 0 & -2 \\ -1 & 0 \end{pmatrix} \\
\text{(d)} & \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} c \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$

- Which one of the following is NOT TRUE v.
 - (a) $Det(A^t) = Det A$
- (c) Det(AB) = DetA DetB
- (b) Det(A+B) = DetA + DetB etB (d) $Det(A^{-1}) = (Det A)^{-1}$, when A is invertible.
- $Det(e_2, 2e_1+3e_2, e_3)$ where e_1, e_2, e_3 are standard basis elements of \mathbb{R}^3 is vi.
 - (a) -1

(b) 0

(c) 1

- (d) -2
- vii. Let $A \in M_n(\mathbb{R})$ be an invertible matrix then det(Adj A) is
 - (a) $(\det A)^n$

(b) $(det A)^{n-1}$

(c) $\det A^{-1}$

- (d) None of these
- viii. Let V be a finite dimensional inner product space and W be a subspace of V.

Then $(W^{\perp})^{\perp}$ is equal to

(a) V

(b) W

(c) W^{\perp}

- (d) $V \setminus W$
- For $x = (x_1, x_2)$ and $y = (y_1, y_2) \in \mathbb{R}^2$, which of the following is **not** an inner product?
 - (a) $\langle x, y \rangle = 2x_1y_1 + 3x_2y_2$ (b) $\langle x, y \rangle = x_1y_1 + x_2y_2$
- - (c) $\langle x, y \rangle = x_1 y_1 x_2 y_2$
- (d) $\langle x, y \rangle = x_1 y_1 + 4x_2 y_2$

Paper / Subject Code: 79555 / Mathematics : Paper II (Rev.)

x. If $\{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 with Euclidean inner product, then for :

$$3v_1 + 7v_2$$
 and $y = 3v_1 - 7v_2$, $\langle x, y \rangle =$ ____

(a) -40

(b) 40

(c) 0

- (d) None of these.
- Q2. Attempt any **ONE** question from the following:

(08)

- a) i. State and prove the Rank-Nullity Theorem.
 - ii. Let $A \in M_n(\mathbb{R})$. Prove that the system AX=B of n non-homogenous linear equations in n unknowns has a unique solution if and only if rank(A) = n.
- Q.2 Attempt any **TWO** questions from the following:

(12)

- b) i. Show that F is non-singular where $F: \mathbb{R}^3 \to \mathbb{R}^3$ is given by F(x,y,z) = (x+y-2z,x+2y+z,2x+2y-3z).
 - ii. $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by T(x, y, z) = (x + 2y z, y + z, x + y 2z). Find the basis for Ker T and Nullity T.
 - iii. Show that a n-dimensional real vector space is isomorphic to \mathbb{R}^n .
 - iv. Test for consistency and if consistent solve the system: 2x-3y+7z=5, 3x+y-3z=13, 2x+19y-47z=32
- Q3. Attempt any **ONE** question from the following:

(08)

- a) i. Let $A \in M_n(\mathbb{R})$. Prove that A is invertible if and only if columns of A are linearly independent. Hence, prove that if $\det A = 0$ then columns of A are linearly dependent.
 - ii. Let $v_1, v_2, ..., v_n \in \mathbb{R}^n$. Show that

I)
$$\det(v_1, ..., v_i, ..., v_j, ..., v_n) = \det(v_1, ..., v_i + \propto v_j, ..., v_j, ..., v_n)$$

for $1 \le i \ne j \le n$ and $\alpha \in \mathbb{R}$

II)
$$\det(v_1, ..., v_i, ..., v_j, ..., v_n) = -\det(v_1, ..., v_j, ..., v_n)$$

for $1 \le i \ne j \le n$

Q3. Attempt any **TWO** questions from the following:

(12)

- b) i. Let $A \in M_n(\mathbb{R})$, show that A adj $(A) = \det A$. I_n , where I_n is the $n \times n$ identity matrix.
 - ii. Solve the following system of linear equations using Cramer's rule 2x y + z = 1, x + 3y 2z = 1, 4x 3y + z = 0
 - iii. For $A, B \in M_n(\mathbb{R})$, if A is invertible show that
 - a) $\det(A^{-1}) = (\det A)^{-1}$
 - b) $\det(ABA^{-1}) = \det B$
 - c) $\det(adj A) = (\det A)^{n-1}$
 - iv. Define adjoint of a matrix. Find A^{-1} for $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ using adjoint.

Q4. Attempt any **ONE** question from the following:

(08)

- a) i. Define inner product and inner product space over \mathbb{R} . Show that $(P_2[x], \langle , \rangle)$ is an inner product space over \mathbb{R} where $\langle p, q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2)$ for $p(x) = a_0 + a_1x + a_2x^2$, $q(x) = b_0 + b_1x + b_2x^2$.
 - ii. Define orthogonal and orthonormal sets. Let $\{x_1, x_2, \dots, x_n\}$ be an orthonormal basis of an inner product space V. Let $x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$. Then prove the following: (p) $\alpha_i = \langle x, x_i \rangle$ for $i = 1, 2, \dots, n$ (q) $\|x\|^2 = \sum_{i=1}^n \langle x, x_i \rangle^2$
- Q4. Attempt any **TWO** questions from the following: (12)
 - b) i. Define angle between two vectors in a real inner product space. Find angle between $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ with respect to the inner product $\langle A, B \rangle = tr(AB^t)$ on $M_2(\mathbb{R})$.
 - ii. Prove that an orthogonal set in a real inner product space *V* is linearly independent.
 - iii. Let W be a subspace of a real inner product space V. Define W^{\perp} , the orthogonal complement of W. Show that W^{\perp} is a subspace of V.
 - iv. Apply Gram-Schmidt process to obtain orthogonal set corresponding to $\{(0,1,1),(1,-1,0),(2,0,1)\}$ in \mathbb{R}^3 with dot product.
- Q5. Attempt any **FOUR** questions from the following: (20)
- a) Prove that if $T:V \to V'$ is a linear transformation then T is injective if and only if $\ker T = \{0\}$.
- b) Find the rank of $A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -1 & 1 \\ 4 & -1 & 2 \\ -1 & 1 & -1 \end{pmatrix}$.
- Use the following expression of determinant $\det A = \sum_{\sigma \in S_n} sgn\sigma \ a_{1 \sigma(1)} \ a_{2 \sigma(2)} \dots a_{n \sigma(n)}$ to find the determinant of the matrix $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ (I) Use determinant to check whether the homogeneous system
- d) (I) Use determinant to check whether the homogeneous system $\begin{pmatrix} 1 & 2 & 3 \\ 1 & -6 & 1 \\ 7 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ has non-trivial solution. State the result used.
 - (II) Use determinant to find area of the parallelogram spanned by vectors.

x = (5,6) and y = (2,5). State the result used.

- e) Let V be an inner product space and $u, v \in V$. Let a, b be nonzero elements of $\mathbb{R} \& a \neq \pm b$. Prove that ||au + bv|| = ||bu + av|| iff ||u|| = ||v||
- f) Find distance between $f(x) = \cos x$ and $g(x) = \sin x$ in $C[-\pi, \pi]$ using $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$
