VCD/ 7/10 22 SYBSC-SEM III MATHEMATICS-1 75MARKS 21/2HRS

NOTE:

1. All questions are compulsory.

- 2. For Q.1, Q.2 and Q. 3 attempt any one sub question (each 8 marks) from part (a), and any two sub questions (each 6 marks) from part (b).
- 3. For Q.4, attempt any three. (each 5 marks)

Q.1. (a) Attempt any one. [each 8Mks]

- 1) Define convergent and divergent series and Prove that Σ arⁿ⁻¹ for n=1 to ∞ the geometric series converges iff |r| < 1
- 2) State and prove Leibniz test for an alternating series.

(b) Attempt any two. [each 6Mks]

1) Investigate the convergence of

00

$$\sum \frac{\cos n\pi}{n\sqrt{2}}$$

n=

2) Prove that if Σa_n is a convergent series of R then $\lim a_n$ as n tends to ∞ is equal to 0

3) Prove that if Σa_n , Σb_n are two convergent series then prove that

 $\Sigma(a_n+b_n)$, $\Sigma(a_n-b_n)$ is convergent series.

Q.2. (a) Attempt any one. [each 8Mks]

1) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded function and P be partition of [a, b] then prove that

i) $m(b-a) \le L(P, f) \le M(b-a)$

ii) $m(b-a) \le U(P, f) \le M(b-a)$ where m, M are Infimum and supreme of f(x) over [a, b] respectively

2)Let f:[a, b] \rightarrow R be bounded function then prove that f is integrable iff for every ϵ >0 there exist a partition P of [a, b] such that U(P, f) -L(P, f) < ϵ .

(b) Attempt any two. [each 6Mks]

1) Prove that If f is integrable on [a, b] then f2 is also integrable on [a, b]

2) Define L(P, f), U(P, f) where P is partition of [a, b] for bounded function f:[a, b] \rightarrow R and prove that for bounded function f:[a, b] \rightarrow R, Partition P of [a, b], L(P, f) \leq U(P, f)

3) Prove that a constant function is Riemann integrable.

Q.3. (a) Attempt any one. [each 8Mks]

- 1) Let a>0, then prove that $\sqrt[a]{\omega} dt/t^p$ converges iff P>1.
- 2) Define Beta function $\beta(m, n)$ and prove that $\beta(m, n) = \beta(n, m)$. Define Gamma function and prove that $\Gamma(n+1) = n \Gamma(n)$ for n > 0

(b) Attempt any two. [each 6 Mks]

- 1) i) Define Indefinite integral of f on [a, b] Find indefinite integral of f on [0,1] for f:[0,1] $\rightarrow R$ as $f(x) = 2x^3 + 3$.
- ii) Define Primitive if function f. Give an example to show that primitive of f if exist, need not be unique.
- 2)Prove that Let f:[a, b] \rightarrow R be a continuous function then there exist $c \in [a, b]$ such that $a \int b f(x) dx = f(c)$ (b-a)
- 3) State Leibnitz rule and Use it to find the derivative of the following $f(x) = \cos x \int \frac{\sin x}{1-t^2} dt$

Q.4.Attempt any three. [each 5 Mks]

1) Discuss the convergence of following series

00

$$\sum \frac{(-1)^n - 6^n}{15^{n+2}}$$

n=1

2) Find the sum of the series

00

$$\sum \frac{20}{(5n-4)(5n+1)}$$

n=1

- 3) Let $f:[0,1] \to \mathbb{R}$ as f(x) = 3x Prove that f is integrable and find $0 \int_0^1 3x \, dx$.
- 4) Find the norm of following partition of intervals I = [-2,5], $P = \{-2,-1.5,-1.25,0,2.6,2.9,4.3,5\}$.
- 5) Find the value of c in [0,1] such that $f(c)=f_{avg}$ for $f(x)=5x^4$, $x \in [0, 1]$
- 6) Find the area between the curves $y=2x^2$ and y=x between x=0 and x=2.

XXXXX