Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks.

1. Attempt any ONE question from the following: (08)

a) i. The substitution $x = e^z$ reduces the Cauchy equation $x^3 \frac{d^3y}{dx^3} + px^2 \frac{d^2y}{dx^2} + qx \frac{dy}{dx} + ry = 0 \text{ into the differential equation}$ $\frac{d^3y}{dx^3} + (p-3) \frac{d^2y}{dz^2} - (p-q-2) \frac{dy}{dz} + ry = 0 \text{ and } y = x^m \text{ is a solution}$

to the given Cauchy equation if and only if m is the root of the equation $m^3 + (p-3)m^2 - (p-q-2)m + r = 0$.

ii. Let $y_1(x)$ and $y_2(x)$ be two solutions to the differential equation to y'' + P(x)y' + Q(x)y = 0 Where P(x), Q(x) are continuous on an interval (a, b) then y_1 and y_2 are linearly dependent on (a, b)

 $W(y_1, y_2)x = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1' = 0 \ \forall \ x \in (a, b)$

b) Attempt any TWO questions from the following: (12)

i. Solve the differential equation: $((2x-1)^3D^3 + (2x-1)D - 2)y = 0$ ii. Find the particular solution to the differential equation $(D^3 + 2D^2)y = 0$;

When x = 0, y = -3, y' = 0, y'' = 12

iii. Verify $y_1 = e^{2x}$ and $y_2 = e^x$ are solution to differential equation y'' - 3y' + 2y = 0. Also verify $y = C_1y_1 + C_2y_2$ is the solution of any two real number C1, C2. Further find C1, C2 using initial condition y(0) = 1, y'(0) = -1.

2. Attempt any ONE question from the following: (08)

a) i. Define Wronskian. If $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ are two linearly independent solutions to the homogeneous linear system $\frac{dx}{dt} = a_1(t)x + b_1(t)y$, $\frac{dy}{dt} = a_2(t)x + b_2(t)y$ then in [a, b] the general solution to above system is $x = c_1x_1(t) + c_2x_2(t)$, $y = c_1y_1(t) + c_2y_2(t)$ where c_1 , c_2 are arbitrary constants.

ii. Obtain the general solution of a Homogeneous Linear system (of two equations) with constant coefficients, when its Auxiliary equation has two real and equal roots.

b) Attempt any TWO question from the following: (12)
i. Using method of variation of parameter find a particular solution $\frac{dx}{dt} = -2x + \frac{dx}{dt}$

 $y, \frac{dy}{dt} = -3x + 2y + 2sint$ and hence find the general solution.

ii. Find the general solution to the linear system $\frac{dx}{dt} = 4x - 3y$, $\frac{dy}{dt} = 8x - 6y$ iii. Show that the solutions $x = e^{4t}$, $y = e^{4t}$ and $x = e^{-2t}$, $y = -e^{-2t}$ are

linearly independent of the system of equation $\frac{dx}{dt} = x + 3y, \frac{dy}{dt} = 3x + y$

3. Attempt any ONE question from the following: (08)

a) i. State the procedure of Picard's method and hence using it find 4th approximation polynomial $y_4(x)$ of the differential equation y' = 2x + y - 2 with y(0) = 2

- ii. Solve the system of ordinary differential equations $\frac{dx}{dt} = x + y t$, $\frac{dy}{dt} = 2x y + 3t$ with x = 1, y = 1 when t = 0, taking $\Delta t = h = 0.1$
- b) Attempt any TWO question from the following: (12)
- a) i. Using Euler's Modified method solve y' = 4x + 9y, y(1) = 0.5, h = 0.25 correct upto 4 decimal places for finding y(1.25) ii. Using Taylor's method find the polynomial of degree 4 that satisfies the differential equation $y' = 2y^2 x^2$, y(1) = 1.5 and using this find the approximation value of y(1.1).

iii. Use Runge-Kutta method of 4th order to estimate y(1.25) when $y' = 2x^3y - 3$, y(1) = 1.3 and h = 0.25

- 4. Attempt any THREE question from the following: (15)
 - a) Solve the following differential equation $y'' + 9y = 12\sin 2x$
 - b) Find the general solution to the following differential equation $x^2y'' + 3xy' + 10y = 0$
 - c) Reduce the differential equation 4y'' 7y' + 6y = 0
 - d) Define a system of homogeneous linear differential equations of order 1. State the condition for two solutions (x_1, y_1) and (x_2, y_2) to be linearly independent. Also write the general solution.
 - e) Estimate y(0.25) using Runge-Kutta method of 2^{nd} order with $w_1 = \frac{1}{3}$, $w_2 = 2/3$ for the differential equation $y' = \frac{x-y}{2}$, y(0) = 1 and h = 0.25
 - f) Using Euler's method solve $y' = 5x^2 + 2xy$, y(1) = 0.25, h = 0.15 for finding y(1.6).

XXXXX