VCD - 15/10/19 - MATHS I- SYBSC - SEM III EXAM - 100 MARKS - 3HRS

N.B: 1) All questions are compulsory

2) Figures to right indicate full marks

Q.1 Choose correct alternative in each of the following (2 marks each)

- 1) The set $\{(x, y) \in \mathbb{R}^2 / 1 \le x + y < 4\}$ is -----in \mathbb{R}^2 .
- a) both open and closed b) open c) neither open nor closed d) none of these
- 2) The sequence $(x_m) \to a$ in \mathbb{R}^n iff-----
- $a)\|x_m-a\|\to 0\ in\ \mathbb{R}\quad \text{b)}\ \|x_m-a\|\to 0\ in\ \mathbb{R}^n\ \text{c)}\ \|x_m-a\|\to 1\ in\ \mathbb{R}^n$
- d) none of these
- 3) The sequence $x_m = (m, m + 1, m + 2)$ is -----
- a) bounded but not convergent in \mathbb{R}^3 b) convergent but not bounded in \mathbb{R}^3
- c) neither bounded nor convergent in \mathbb{R}^3 d) none of these
- 4) $f: \mathbb{R}^2 \to \mathbb{R}$ as f(x, y) = 1(x, y) = (0,0) $(x, y) \neq (0,0)$ then ---
- a) f is continuous but |f| is not continuous at (0,0)
- b) f is not continuous but |f| is continuous at (0,0)
- c) neither f nor |f| is continuous at (0,0)
- d) none of these
- 5) If Df(a) is -----for a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$
- a) a linear transformation but not an element of $\mathbb R$

c) not both linear transformation as well as an element of $\ensuremath{\mathbb{R}}$ d) none of b)a real number

- 6) For differentiable function $f:S\to\mathbb{R}$ at $\in S$, directional derivative of f at a in direction of $u, D_u f(a) = - -$
- a) $\nabla f(a)(u)$

- b) $\nabla f(a)$ c) 0 d) none of these
- 7) For a function : $\mathbb{R}^n \to \mathbb{R}$, $\frac{\partial f}{\partial x_i}(a)$ is -----
- a) directional derivative of f at a in direction of any nonzero vector u

- b) directional derivative of f at a in direction of $(0,0,\ldots,1,\ldots,0) = e_i$
- c) directional derivative of f at a in direction of $(1,0,\ldots,0,\ldots,0) = e_1$
- d) none of these
- 8 let $f(x,y) = sinxy + \log(x + y)$ then taylor's polynomials of degree 2 about (1,0) is---a) $3x + 2y - x^2 - y^2 - 2$ b) $-x^2$ c) $3x + 2y - x^2$ d) none of these

- 9) For $g: \mathbb{R}^3 \to \mathbb{R}^2$ as $g(u, v, w) = (uvw, u^2 + v^2 + w^2)$ $\int g(u, v, w) = -\frac{1}{2} \int g(u, v, w) dv = -\frac{1}{2} \int g(u,$

- a) $\begin{bmatrix} u & w \\ v & uv \end{bmatrix}$ b) $\begin{bmatrix} uw & uw & uv \\ 2u & 2u & 2w \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ 0 & u \end{bmatrix}$ d) none of these
- 10) 10) If z = f(x, y) where $x = r\cos\theta, y = r\sin\theta$ then

a)
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 0$$
 b) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 c$) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$

d) none of these

Q.2 a) Attempt any ONE question from the following.(8marks each)

- 1) Let the sequence $x_m=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ then prove that x_m is convergent in \mathbb{R}^n iff each of the coordinate sequence x_i is convergent in \mathbb{R}
- 2)State and prove Mean Value theorem for scalar field.
- b) Attempt any TWO question from the following.(6marks each)
- 1) Find the directional derivative of following function at indicated points and direction if exists.

$$f: \mathbb{R}^2 \to \mathbb{R} \text{ as } f(x, y) = \frac{xy}{x^2 + y^2}$$
 $(x, y) = (0, 0)$
= 0 $(x, y) \neq (0, 0)$

at a = (0,0) in the direction of u = (1,-1)

2) Find the real value of $\theta \in (0,1)$ such that $f(a+v)-f(a)=D_uf(a+\theta v)||v||$ where u is unit vector in direction of v

$$f(x,y) = x^2 - xy$$
 $a = (-1,1), v = (2,3)$

- 3) Let S be a nonempty open subset of \mathbb{R}^n . Let $f,g:S\to\mathbb{R}$, $a=(a_1,a_2,\ldots,a_n)\in S$
- If $\frac{\partial f}{\partial x_i}(a)$, $\frac{\partial g}{\partial x_i}(a)$ exists for $i = 1, 2, \dots, n$ then prove that

i)
$$\frac{\partial (f+g)}{\partial x_i}(a) = \frac{\partial f}{\partial x_i}(a) + \frac{\partial g}{\partial x_i}(a)$$
 ii) $\frac{\partial (\alpha f)}{\partial x_i}(a) = \propto \frac{\partial f}{\partial x_i}(a)$

4) In the following find the partial derivatives of f at (0,0) if exists

$$i)f(x,y) = \sqrt{|xy|}$$

$$ii) f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x} \quad xy \neq 0$$

= 0 otherwise

Q.3 a) Attempt any ONE question from the following. (8marks each)

- 1) State and prove Chain rule for scalar fields
- 2) Let S be a nonempty open subset of \mathbb{R}^n . Let $a \in S$ and suppose ∇f , ∇g , $\nabla (\propto f)$ exists at a. Then prove that i) $\nabla (\propto f)(a) = \propto \nabla f(a)$ where \propto is real constant. ii) $\nabla \left(\frac{f}{g}\right)(a) = \frac{g(a)\nabla f(a) f(a)\nabla g(a)}{(g(a))^2}$ provided $g(a) \neq 0$ and $g(x) \neq 0$ in neighbourhood of a
- o, Attempt any TWO question from the following. (6marks each)
- 1) State and prove Euler's Theorem for function of three variables
- 2) State and prove Mean Value theorem for differentiable scalar fields
- 3)i)Use chain rule to find total derivative $f(x, y) = 3x^3y^2 + 5x^2y^3$

$$x(t) = 1 - t^2, y(t) = 1 + t^2$$

ii) Find the level curve of following f for given k

$$f(x, y, z) = x^2 + y^2 + z^2$$
 $k = 1$

4)Prove that following functions are continuous but not differentiable at origin f(x, y) = |xy|

Q.4 a) Attempt any ONE question from the following.(8marks each)

- 1)State and prove the relation between total derivative and jacobian matrix of vector valued function
- 2) State and prove Mean Value Inequality for vector field f differentiable over nonempty subset S of \mathbb{R}^n .

b) Attempt any TWO question from the following.(6marks each)

1) i)Define the Jacobian matrix of a vector field at the given point

$$f(x,y) = (x\cos y, y\sin x)at(\frac{\pi}{4}, \frac{\pi}{4})$$

ii) Using chain rule find $\frac{\partial w}{\partial s}$, $\frac{\partial w}{\partial t}$ at s=1, t=2, w=xy+yz+zx

$$x(s,t) = e^{st}, y(s,t) = t^2, z(s,t) = (s+t)^2 at (s,t) = (1,-1)$$

2) Let S be a nonempty open subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}^m$ be a vector field. If f is differentiable at $a \in S$ then it is continuous at $a \in S$. What about converse?

- 3) Let S be a nonempty open subset of \mathbb{R}^2 . Let $f: S \to \mathbb{R}^m$ be a vector field. If f is differentiable at $a \in S$ then $\exists M > 0, \delta > 0$ such that $||x a|| < \delta \implies ||f(x) f(a)|| \le M||x a||$
- 4) Let S be a nonempty open subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}^m$ be a vector field differentiable over S. Let $a, b \in S$ and the line segment joining a and b which is the set

$$\{a + (b-a)t/t \in [0,1]\} lies in S then f(b) - f(a) = \left(\int_0^1 J(f(a+(b-a)t)dt)\right) \cdot (b-a)$$

$$= \left(\int_0^1 Df(a+(b-a)t)dt\right) \cdot (b-a)$$

Q.5 Attempt any FOUR question from the following.(5marks each)

- 1) Prove that every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n
- 2) i) Evaluate $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ and $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ for following and check whether both are equal or not. $f(x,y) = \frac{2x}{x^2+y^2}$ $(x,y) \neq (0,0)$

=0 otherwise

ii) In following find α so that $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (0,0)

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$

$$= \alpha$$
otherwise

3) i)Find total derivative of following function at indicated point

$$f(x, y, z) = x^2 + y^2 + z^2$$
 at $a = (1,0,1)$

ii)Find directional derivative of following function at indicated point using gradient function.

$$f(x, y, z) = x^2 + 2y^2 + 3z^2$$
 at $a = (1,1,0), u = (1,-1,2)$

4) Prove that following functions are differentiable at origin.

$$f(x,y) = xy \sin \frac{1}{\sqrt{x^2 + y^2}}$$

$$= 0 \qquad \text{otherwise}$$

- 5) Use Lagranges multiplier method to find maximum and minimum values of given function subject to specified constraints. f(x, y, z) = xyz subject to $x^2 + 2y^2 + 3z^2 = 6$
- 6)i) Define Hessian Matrix for $f: \mathbb{R}^n \to \mathbb{R}$ scalar field and find hessian matrix for

$$f: \mathbb{R}^3 \to \mathbb{R}$$
 given by $f(x, y, z) = x^4 + 2xy^2z + y^2z$ at (1,0,1)

- ii) Define the following terms for $f: S \to \mathbb{R}$ for nonempty open subset S of \mathbb{R}^n
 - a) stationary point of f b) absolute maximum at a of f c) saddle point of f