Paper / Subject Code: 79554 / Mathematics : Paper I (Rev.)

		(3 Hours)			[Total Marks:	[Total Marks : 100]	
N.B.	1 . Al	ll quest					
	2. Fi	gures t	o the right indicate marks for res	spective	e parts		
Q.1	Choo	se corr		(20			
	i. The set $S = \{(x, y) \in \mathbb{R}^2 / 1 \le x^2 + y^2 \le 2\}$ is						
		(a)	An open set	(b)	Closed set		
		(c)	Neither open nor closed		None of these		
	ii.	Let f	$f: \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x, y) =$	$\begin{cases} \frac{x}{x^2 + y^2} \\ 0 \end{cases}$	$if(x,y)\neq(0,0) if(x,y)=(0,0)$. Then,		
		(a)	$\lim_{(x,y)\to(0,0)} f(x,y) \text{ exist.}$	(b)	f is continuous at (0,0).		
		(c)	$ f(x,y) \le \frac{1}{2}$, $\forall (x,y) \in \mathbb{R}^2$	(d)	None of these		
	iii. Let $f(x,y) = x + y $, $for(x,y) \in \mathbb{R}^2$, then						
		(a)	$f_x(0,0) = 0, f_y(0,0) = 0$	(b)	$f_x(0,0)$ and $f_y(0,0)$ do not exist.		
		(c)	$f_x(0,0) = 1$, $f_y(0,0) = 1$	(d)	None of these		
	iv.	v. Let A: Gradient of a scalar field is a scalar.					
		B: Every differentiable scalar field is continuous.					
	Then which of the following is true?						
		(a)	A is true, B is false.	(b)	A is false, B is true.		
		(c)	Both A & B are true.	(d)	Both A & B are false.		
	v.	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are bounded. Then					
		(a)	f may or may not be	(b)	f is continuous at all points		
	10.67 T		continuous at all points				
200		(c)	f is differentiable at all	(d)	None of these		
			points				
	vi. The total derivative T_a of a scalar field is						
		(a)	a constant	(b)	a linear transformation		
		(c)	a vector	(d)	a real number		
700	vii.	The linear approximation to $e^x \cos(y+z)$ near the origin is					
	500	(a)	independent of x .	(b)	independent of y		
		(c)	independent of z	(d)	1		

Paper / Subject Code: 79554 / Mathematics : Paper I (Rev.)

- viii. If z = f(x, y) is differentiable and x = g(u, v), y = h(u, v) are also differentiable functions then $\frac{\partial z}{\partial u}$ is
 - (a) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$
- (b) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial u} \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$
- (c) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$
- (d) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$
- ix. If $f(x, y) = x^2 2x + y^2$ then
 - (a) (1,0) is a critical point of f (b) (1,0) is a critical point of f which is a which is a local minima. local maxima.
 - (c) (1,0) is a saddle point of f. (d) None of these
- x. Stationary point is a point where function f(x, y) have
 - (a) $\frac{\partial f}{\partial x} = 0$.

- (b) $\frac{\partial f}{\partial y} = 0$
- (c) Both (a) and (b).
- (d) None of these
- Q.2 a) Attempt any ONE question from the following:

(08)

- i. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a vector valued function and let $a \in \mathbb{R}^n$. Prove that f is continuous at a if and only if each $f_i: \mathbb{R}^n \to \mathbb{R}$ is continuous at a.
- ii. State and prove mean value theorem for derivatives of scalar fields.
- b) Attempt any TWO questions from the following:

(12)

i. Using definition of limit, check if $\lim_{(x,y)\to(0,0)} f(x,y)$ exists, where

$$f(x,y) = \begin{cases} x \sin \frac{1}{y} & \text{if } y \neq 0 \\ 0 & \text{if } y = 0 \end{cases}$$

- ii. Define limit of a function $f: S \to \mathbb{R}$ where $S(\neq \phi) \subseteq \mathbb{R}^n$, at point a, and show that the limit of function of several variables is uniquely determined
- Define directional derivative of a scalar field $f(x, y, z) = \left(\frac{x}{y}\right)^z$, $y \neq 0$ at the point a = (1,1,1), in the direction of u = (2,1,-1) Find the directional derivative of the following functions at the indicated point in the direction (using the result $D_u f(a) = \nabla f(a) \cdot u$)
- iv. If $\sin u = \frac{x+2y+3z}{\sqrt{x^8+y^8+z^8}}$; $(x, y, z) \neq (0, 0, 0)$. Then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} + 3\tan u = 0$

Q.3 a) Attempt any ONE question from the following:

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and $a \in \mathbb{R}^n$. Define the total derivative i. Df(a) in terms of a linear transformation and show that Df(a) when exist, is uniquely defined.
- ii. State and prove chain rule for the derivative of a scalar field.
- b) Attempt any TWO questions from the following:

(12)

(08)

- i. Find total derivative as linear transformation T for the function $f(x, y, z) = x^3 + 3y^2 + 4z^2$ at point a = (-1, -1, 1)
- Find directional derivative of f(x, y, z) = 3x 5y + 2z at (2,2,1) in the ii. direction of outward normal to the sphere $x^2 + y^2 + z^2 = 9$.
- Find the equation of tangent plane and normal line to the surface iii. $z + 1 = xe^y \cos z$ at (1,1,0)
- Show that, for each of the following functions, the second order mixed partial iv. derivatives are equal.
 - 1. $f(x,y) = x^4 + y^4 xy^3$
 - 2. $f(x,y) = \sqrt{xy}$
- Q.4 Attempt any ONE question from the following: a)

(08)

- Define Df(a), the total derivative at $a \in \mathbb{R}^n$ for a function $f: \mathbb{R}^n \to \mathbb{R}^m$ in i. terms of a linear transformation. Show that if f is differentiable at a then fis continuous at a. Is the converse true? Explain.
- Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a scalar field. Let $(a, b) \in S$ be a stationary point of f. ii. Suppose f(x,y) possesses continuous second order partial derivatives in some neighbourhood of (a, b). Let $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$,

 $C = f_{yy}(a, b)$ and $\Delta = AC - B^2$. Then prove that

- (1) if $\Delta > 0$, A > 0, then f has local minimum at (a, b).
- (2) if $\Delta > 0$, A < 0, then f has local maximum at (a, b).
- (3) if $\Delta < 0$, then f has saddle point at (a, b).

if $\Delta = 0$, the test is inconclusive (show this by example).

b) Attempt any TWO questions from the following: (12)

Let *U* is open set in \mathbb{R}^n and $f: U \to \mathbb{R}^m$ is differentiable at $a \in U$. Show Ť. that $\exists M > 0, \delta > 0$ such that

$$||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| \le M||x - a||.$$

54579

Paper / Subject Code: 79554 / Mathematics : Paper I (Rev.)

- ii. Find the Taylors polynomial of degree 2 at $p = (1, \pi)$ for the function $f(x, y) = \cos(xy)$
- iii. Find the critical points, saddle points and local extrema if any for the function $f(x, y) = x^3 + y^3 3x 12y + 20$.
- iv. Find the greatest area that a rectangle can have if the length of its diagonal is 2.

(20)

- Q.5 Attempt any FOUR questions from the following:
 - a) Show that for the following functions the limit does not exists

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^6+y^2}$$
 (ii)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^4+z^4}$$

- b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \begin{cases} 0 & \text{if } xy = 0 \\ 1 & \text{if } xy \neq 0 \end{cases}$
 - Show that f is not continuous at (0, 0) but both partial derivatives exist at (0, 0)
- c) Find the direction in which function $f(x,y) = 9x^3 + 5y^2$ increases most rapidly and the direction in which decreases most rapidly at point (2,1).
- d) Evaluate the total derivative of $z = 4x^3y + 7x^2y^3$ where $x = 4 + 4t^4$ and $y = 1 2t^2$, using chain rule.
- e) Compute the matrices Dg(1,1), D(f(g(1,1))) and D(fog(1,1)) in each of the following and verify that

$$D(f(g(1,1)))Dg(1,1) = D(fog(1,1))$$
 where
$$f(u,v) = (e^{uv},uv), g(x,y) = (x + y, x - y).$$

f) Find the Hessian matrix of $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = x^2 + y^2 + z^2 + 3xy + 3yz + 3zx \text{ at } (1,1,1).$
