(3 Hours) [Total Marks: 100

- N.B.: 1. All questions are compulsory.
 - 2. Figures to the right indicate full marks.
- Q.1 Choose the correct alternative in each of the following:

(20)

(a) 3

(b) 6

(c) 1

- (d) 2
- ii. Which of the following matrix is skew symmetric?
 - (a) $\begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

(b) $\begin{bmatrix} 0 & 2 & 2 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$

(c) $\begin{bmatrix} 0 & 7 & 0 \\ 7 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

- (d) $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- iii. The parametric representation for the line through the points (1,2) and (3,2) is
 - (a) x = 4 + 4t, y = -1 + t
- (b) x = 2 t, y = 2 3t
- (c) x = 1 + 2t, y = 2 + t
- (d) None of these
- iv. Which of the following sets is linear independent?
 - (a) {(1,-1), (1,0)}
- (b) $\{(\frac{3}{2},3),(3,6)\}$
- (c) $\{(-4,2), (-8,4)\}$
- (d) {(1,3), (-2,-6)}
- v. Which of the following is not a subspace of \mathbb{R}^2 over \mathbb{R} ?
 - (a) $\{(x,y) \in \mathbb{R}^2 | x = 0\}$
- (b) $\{(x,y) \in \mathbb{R}^2 | x + y = 0\}$
- (c) $\{(x,y) \in \mathbb{R}^2 | x + 2y = 0\}$
- (d) $\{(x,y) \in \mathbb{R}^2 | x y = 3\}$
- vi. Which of the following is a generating set of \mathbb{R}^2 ?
 - (a) $\{(2,3),(0,6)\}$

(b) $\{(1,3),(2,6)\}$

(c) $\{(3,0),(0,0)\}$

- (d) $\{(1,-1),(3,-3)\}$
- vii. The rank of linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as
 - T(x,y) = (x y, x y) is (a) 2
- (b) 3

(c) 4

(d) 1

viii.	The nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as $T(x,y,z) = (0,\ 0)$ is				
	(a)		(b)		
	(c)	2	(d)	3	
ix.	If for a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ the Dim(Ker(T)) = 1 then the				
	Rank of T is				
	(a)	2	(b)		
	(c)	3	(d)	4	
Х.	Which of the following is the basis for				
	$W = \{(x, y, z) \in \mathbb{R}^3 x + y + 2z = 0\} ?$				2000
	(a)	{(-1,1,0), (-2,0,1)}	(b)	{(0,1,-1), (0,1,0)}	
	(c)	{(1, 0, -2), (1,1,1)}	(d)	{(1, -1, 1), (2, 1, -1)}	
a)	Attempt any ONE question from the following:				(08)
	i. If A and B are $n \times n$ matrices then prove that				
45%.	$(1) (A+B)^T = A^T + B^T.$				
	(2) If A is invertible prove that A^T is invertible and				
	$(A^{-1})^T = (A^T)^{-1}$				
	ii. For $m, n \in \mathbb{N}$ using induction on m prove that any homogeneous				
	system of m real linear equations in n unknowns has a non-				
	trivial solution if $m < n$.				
887 478	Attempt any TWO questions from the following:				(4.2)
D)	Aue	empt any Two questions from	ine i	ollowing:	(12)
ハロイン	~ ~ ~ ~ Y			ad V / \"	

Let $A=(a_{ij})$ be $n\times n$ real matrix and $X=\left(x_1,x_2,\ldots,x_n\right)^t$. If $\alpha=\left(\alpha_1,\alpha_2,\ldots,\alpha_n\right)^t$ and $\beta=\left(\beta_1,\beta_2,\ldots,\beta_n\right)^t$, are solutions of the linear homogeneous system AX=0, then prove that $\alpha+\beta$ and $k\alpha$, $\alpha\in\mathbb{R}$ are also solutions of the same system.

ii. Use parametric equations of line to check if the points (1,-2,0),(2,0,-3) and (4,4,-6) are collinear.

Q.2

- iii. Geometrically interpret solutions of the real linear homogenous system of 2 equations in 3 unknowns.
- iv. Solve the system of linear equations: x + y + z = 3, x + 2y + 2z = 5, 3x + 4y + 4z = 12 using Gaussian Elimination Method.
- Q.3 a) Attempt any ONE question from the following:

(80)

- i. Prove the following properties of a real vector space V:
 - 1. $a. 0_v = 0_v$, $\forall a \in \mathbb{R}$ and $\forall v \in V$.
 - $2. \ 0.v = 0_v, \ \forall \ v \in V.$
 - 3. $a.v = 0_v$ implies either a = 0 or $v = 0_v$, $\forall a \in \mathbb{R}$ and $\forall v \in V$.
- ii. Let V be a real vector space and $S = \{u_1, u_2, \dots, u_n\} \subseteq V$. Show that S is linear dependent if and only if one of the vectors in S can be written as a linear combination of the other vectors in S.
- b) Attempt any TWO questions from the following:

(12)

- i. Let $V = M_2(\mathbb{R})$ and $W = \left\{ A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in V \mid a, b, c \in \mathbb{R} \right\}$. Show that W is vector subspace of V.
- ii. Check whether $\{(1,3),(4,0),(9,15)\}$ is a linear independent set in \mathbb{R}^2 .
- iii. Prove the following properties of a real vector space:
 - 1) V has a unique additive identity.
 - 2) Every vector in V has a unique additive inverse.
- iv. Define a linear span of a non-empty subset of a real vector space. Let $V=P_2[x]=\{a_0+a_1x+a_2x^2\mid a_0,a_1,a_2\in\mathbb{R}\}.$ Express vector $1+2x+x^2$ in V as a linear combination of $1+x,x^2,x+x^2$ in V.
- Q.4 a) Attempt any ONE question from the following:

(80)

i. Show that every finitely generated vector space has a basis.

51919

- ii. Let V and W be real vector spaces over and $T: V \to W$ be a linear transformation. Prove that $\operatorname{Ker} T$ is a subspace of V and $\operatorname{Image} T$ is a subspace of W.
- b) Attempt any TWO questions from the following:

(12)

- i. Check if the set $\{(1,0,1), (1,1,0), (1,0,-1)\}$ is a basis of \mathbb{R}^3 .
- ii. Find the dimension of image space of $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x, x, y).
- iii. Find the matrix associated with the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x,y,z) = (x+y,x,y,z) with respect to standard bases of \mathbb{R}^3 and \mathbb{R}^4 .
- iv. Find the basis of the subspace $W = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ and extend it to a basis of \mathbb{R}^2 .
- Q.5 Attempt any FOUR questions from the following:

(20)

- a) Find the value of k so that the system of linear equations x + y + 2z = 1, x + 2y z = 2, 2x + 3y + z = k becomes consistent.
- b) Transform the following matrix to it's row echelon form:

$$A = \begin{bmatrix} 1 & 2 & -2 & 3 & 1 \\ 1 & 3 & -2 & 3 & 0 \\ 2 & 4 & -3 & 6 & 4 \\ 1 & 1 & -1 & 4 & 6 \end{bmatrix}$$

- c) Let V be vector space of all real valued sequences and $S = \{(x_n) \in V : (x_n) \text{ is convergent } \}$. Show that S is a subspace of V over \mathbb{R} .
- d) Examine whether the set S generates \mathbb{R}^3 where $S = \{ (2,3,0), (1,0,4), (0,2,0) \}$
- e) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is such that T(1,2) = (3,-3) and T(3,2) = (-2,1). Find T(5,6).
- f) Verify the Rank-Nullity theorem for $T: \mathbb{R}^2 \to \mathbb{R}$ defined as T(x,y) = x + y.

51919