FYBSC- SEM II -MATHS I - $2\frac{1}{2}$ HRS - 75 MARKS - D 23 | 9 | 2016 NOTE: |) All questions are compulsory.

- For Q.1, Q.2 and Q. 3 attempt any one subquestion (each 8 marks) from part (a), and any three subquestions (each 4 marks) from part (b).
- 3) For Q.4, attempt any three.(each 5 marks)
- Q.1. (a) Attempt any one. [each 8]
 - 1) Let Σa_n , Σb_n be convergent series converging to a & b respectively then prove following
 - i) If $d_n = a_n b_n \quad \forall n \in \mathbb{N}$ then $\sum c_n$ is convergent, converging to a b.
 - ii) If $\alpha \in \mathbb{R}$ is fixed and $c_n = \alpha a_n$ then Σc_n is convergent, converging to αa .
 - 2) Examine convergence of following series.
 - i) $\sum \frac{n}{n^2 \cos^2(n)}$
- $ii) \sum \frac{n^2+2}{n^4+5}$
- (b) Attempt any three. [each 4]
- 1) Find n^{th} partial sum and determine if the series converge or diverge.

$$1 - 3 + 9 - 27 + \dots + (-1)^{n-1} (-3)^{n-1}$$

- 2) State Leibnitz theorem and examine the convergence of $\sum_{n=2}^{\infty} \frac{\cos n\pi}{\sqrt{n}}$
- 3) Define an absolute convergence of series and prove that absolute convergent series are convergent.
- 4) State Modified root test and examine the convergence of $\sum_{n=1}^{\infty} (\frac{n+3}{n})^{n^2}$
- Q.2. (a) Attempt any one. [each 8]
- 1) Define the derivative of a real valued function f at $x \in I$ an open interval subset of \mathbb{R} and show that following functions f are differentiable on \mathbb{R}
 - i) $f: \mathbb{R} \to \mathbb{R}$ as f(x) = c $c \in \mathbb{R}$.
 - ii) $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = a^x$ a > 0
 - 2) State Leibnitz theorem and find n^{th} derivative of following

	(b) Attempt any three. [each 4]
	1) Find y_n , n^{th} order derivative of y if $y = \frac{1}{x^2 - 5x + 6}$
	2) If $xy - log y = 1$ then prove that $y^2 + (xy - 1)y_1 = 0$
	3) Find equation of tangent and normal to the following
1	$x^2 + xy + 2y^2 = 28$ at (2,3)
: 	4) If $-1 \le x \le 1$ then find derivative of $y = \sin^{-1} x$ $-\frac{\pi}{2} < y < \frac{\pi}{2}$
) -	Q.3. (a) Attempt any one. [each 8]
	1) State Rolle's Theorem and give their geometrical interpretation.
	Verify Rolle's Theorem for $\frac{x^2-4x}{x+2}$ in $[0,4]$
	2) State Lagranges Mean Value Theorem and give their geometrical interpretation.
	Verify Lagranges Mean Value Theorem for $f(x) = \sqrt{x^2 - 4}$ in [2,3]
	(b) Attempt any three. [each 4]
	1) Find the Taylor's Polynomials of degree n at $x = a$ for the mentioned values of
	a&n
	$f(x) = \cos x \qquad \qquad a = \frac{\pi}{4}, n = 5$
	2) State L-Hospital's Rule and evaluate following
	$\lim x \to 0 \frac{\log(1+x^3)}{\sin^3 x}$
	3) Find absolute maximum and minimum values of each function on the given
	interval. $f(x) = \frac{-1}{x^2}$ [0.5,2]
	4) Divide the number 22 into two parts so that the sum of their square is minimum
Q.4.	Attempt any three. [each 5]
	1) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if $p > 1$ and diverges if $p \le 1$
	2) Prove that the necessary and sufficient condition for a series Σa , to be convergent
	is for any $\epsilon > 0$ $\exists n_0 \epsilon \in \mathbb{N}$ such that $ \sum_{p=n+1}^m a_p < \epsilon m > n \ge n_0$
	3) If a function $f: I \to \mathbb{R}$, $I \subseteq \mathbb{R}$ open interval, is differentiable at $c \in I$ then prove that f is continuous at $c \in I$. What about converse?

- 4) Verify Cauchy Mean Value Theorem for $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$ in [a, b]
- 5) Sketch the graph of $y = x^3 3x^2 + 4$
- 6) Is f(x) = |x| differentiable on \mathbb{R} ?