[Total Marks: 100]

(Time: 3 Hours)

N.B. 1. All questions are compulsory. 2. Figures to the right indicate marks for respective parts. **3.** Use of Calculator is not allowed. Q.1 Choose correct alternative in each of the following: (20)i. A linear system of equations may have No solution (b) Unique solution (a) (c) infinitely many solutions (d) Any of (a), (b), (c) A diagonal matrix $D = diag(d_1, d_2, ..., d_n)$ is invertible if and only if ii. (b) $d_k = 1$ for some k(a) $d_k \neq 0$ for some k $d_k \neq 0$ for all k(d) $d_k = 1$ for all kLet $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$. Then A^n (where n is positive integer) is iii. I₂ for all n (b) A for all n (a) I₂ if n is even and A if n is odd (d) None of these (c) Which of the following is a subspace of \mathbb{R}^3 over \mathbb{R} ? iv. $\{(x, y, z) \in \mathbb{R}^3 / x = -y, z = 2x\}$ (b) $\{(x, y, z) \in \mathbb{R}^3 / x = -y + 1, z = 2x\}$ (a) (c) $\{(x, y, z) \in \mathbb{R}^3 / x = -y, z = x^2 \}$ (d) None of the above $S = \{(0, 0, 1), (0, 1, 0)\}$ then the linear span of S is v. \mathbb{R}^3 YZ-plane (b) (a) \mathbb{R}^2 (c) XY-plane (d) The singleton set {0} in any real vector space V is vi. (a) linear independent linear dependent (b) (c) a basis of the empty set φ (d) none of the above Which of the following set is a generating set of \mathbb{R}^3 ? vii. (a) $\{(1, 2, 0), (0, 1, 1), (-1, 0, 1)\}$ (b) $\{(1, 2, 1), (2, 4, 2), (-1, 0, 1)\}$ $\{(1, 1, 0), (0, 1, 1)\}$ (d) $\{(-1, 0, 1), (0, 1, 1), (0, 0, 0)\}$ (c) The dimension of the vector space of all real matrices of order 2×3 is viii. 5 (a) 6 (b) 13 None of these (c) (d)

68981 Page **1** of **4**

Paper / Subject Code: 77263 / Mathematics : Paper II

- ix. Which of the following is a linear transformation?
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by
- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(x,y) = (x + 2, y + 3)$$

$$T(x,y) = (x + y,3y)$$

- (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by
- (d) None of the above

$$T(x,y) = (x,y^2)$$

- x. If for a linear transformation $T: \mathbb{R}^7 \to \mathbb{R}^9$, Rank T=4 then the nullity of T is
 - (a) 3

(b) 5

(c) 0

- (d) None of these
- Q.2 a) Attempt any ONE question from the following:

(08)

- i. Prove that the homogeneous system $a_1x + b_1y = 0$, $a_2x + b_2y = 0$ has a non-trivial solution if and only if $a_1b_2 a_2b_1 = 0$.
- ii. Define trace of a square matrix A (Tr(A)) of order n. Show that if A and B are square matrices of order n then $Tr(A) = Tr(A^T)$ and Tr(A + B) = Tr(A) + Tr(B).
- b) Attempt any TWO questions from the following:

(12)

- i. For any square matrix A of order n, prove that
 - (p) $A + A^{T}$ is symmetric
- (q) $A-A^{T}$ is skew symmetric.
- ii. Show that the following system of equations has non-trivial solution for all non-zero real numbers a, b and c:

$$(x + ay + (b + c)z = 0, x + by + (c + a)z = 0, x + cy + (a + b)z = 0$$

- iii. If A is a square matrix then prove that
 - (p) If $A^2 = O$ then I A is invertible. (q) If $A^3 = O$ then A + I is invertible.
- iv. Show that the following system of linear equations is consistent using Gauss elimination method: x + y + z = 3, x 2y 3z = 1, 2x + 3y + z = 9
- Q.3 a) Attempt any ONE question from the following:

(08)

i. Let V be vector space over \mathbb{R} and $V = \{v_1, v_2, \dots v_n\}$ be linear independent set V. For $u \in V$, prove that $S \cup \{u\}$ is linear dependent if and only if $u \in L(S)$ where L(S) is linear span of S.

68981

Paper / Subject Code: 77263 / Mathematics : Paper II

- ii. Verify all properties of scalar multiplication of the vector space $M_{2\times 3}(\mathbb{R}) = \{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} | a_{ij} \in \mathbb{R} \}$, where the operation of matrix addition (+) and scalar multiplication (.) are defined as usual.
- b) Attempt any TWO questions from the following:

(12)

- i. Show that in any vector space the subset of a linear independent set is linear independent.
- ii. Prove that the set $W = \{A \in M_2(\mathbb{R}) | AB = BA \}$ is a subspace of $M_2(\mathbb{R})$, where B is a fixed matrix in $M_2(\mathbb{R})$.
- iii. Express $\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- iv. Let u, v and w be linear independent vectors in real vector space V, show that u + v 2w, u + v w and u + v are linear dependent.
- Q.4 a) Attempt any ONE question from the following:

(08)

- i. Prove that in a vector space of dimension n any set containing n + 1 vectors is linear dependent.
- ii. Define kernel and image of a linear transformation. If $T: V \to V'$ is a linear transformation, prove that Im(T) is a subspace of V'.
- b) Attempt any TWO questions from the following:

(12)

- i. Prove that the vectors (1,1,0), (1,2,3) and (2,-1,5) form a basis for \mathbb{R}^3 .
- ii. Extend $S = \{(1,0,-1)\}$ to a basis of \mathbb{R}^3 .
- iii. Let $T_1, T_2 : V \to W$ be two linear transformations, Prove that $T_1 + T_2 : V \to W$ is also a linear transformation.
- iv. State Rank-Nullity theorem and verify it for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (x, y, 0).

68981

Paper / Subject Code: 77263 / Mathematics : Paper II

Q.5 Attempt any FOUR questions from the following:

- (20)
- a) Find parametric representation for the plane passing through point P = (1,1,1), Q = (2,1,2), R = (2,2,-3)
- b) Reduce the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & -1 \\ 5 & 2 & 0 \end{bmatrix}$ to it echelon form.
- c) Let $S = \{(1,0), (0,1)\}$ and $T = \{(1,1), (1,-1)\}$. Prove that L(S) = L(T).
- d) Show that any two bases of a finite dimensional vector space have the same number of vectors.
- e) Find a linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,1) = (2,3), T(0,1,0) = (0,1), T(0,1,1) = (1,0).
- f) Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x-2y,3x+4y,x-6y) w.r.t bases $\{(1,0),(0,1)\}$ of \mathbb{R}^2 and $\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^3 .

68981 Page **4** of **4**