(3 Hours)

[Total Marks: 100]

N.B.: 1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- Q.1 Choose correct alternative in each of the following:

(20)

- i. The series $\sum_{n=1}^{\infty} \frac{5n+2}{4^n}$ of real numbers
 - is not convergent
- (b) Converges to $\frac{5}{4}$
- Converges to 0 (c)
- (d) None of the above
- If $\sum x_n$ and $\sum y_n$ are two series of real numbers such that $\sum (x_n - y_n)$ and $\sum y_n$ are both convergent then $\sum x_n$
 - Is convergent
- (b) Is divergent
- Conditionally convergent (d) None of the above (c)
- The series $\sum_{n=1}^{\infty} (6r)^n$, $r \in \mathbb{R}$ is

 - (a) Convergent for any $r \in \mathbb{R}$ (b) Divergent for any $r \in \mathbb{R}$
 - (c) Convergent if $|r| < \frac{1}{6}$ (d) None of the above
- iv. The function $y = \frac{1}{x+1} has \frac{d^4y}{dx^4}$ equal to
 - $\frac{1}{(x+1)^5}$ (b) (a)

 $\log(x+1)$ (c)

(c)

- (d) None of the above
- The function $f(x) = |x + 5|, x \in \mathbb{R}$
 - (a) Is differentiable at x = -5
- (b) Is not differentiable at x = 5
- Is differentiable at every
- None of the above (d) $x \in \mathbb{R}$

- The value of $\lim_{x\to 0} \frac{(8^x-3^x)}{x}$ is
 - $\log_e\left(\frac{8}{3}\right)$ (a)
- (b) $\log_{10} 5$
- (c)
- (d) None of the above
- vii. The function $f(x) = \frac{1}{x-5}$, $\forall x \in (5,6)$ is
 - Continuous and bounded (a)
- (b) Continuous but not bounded
- Discontinuous (c)
- (d) None of the above
- The function $f(x) = \log x$, x > 0 is
 - Concave upwards (a)
- (b) Concave downwards
- Decreasing function
- (d) None of the above
- The function $f(x) = 3x^2 7x + 2$ is
- Increasing for all $x \in \mathbb{R}$ (b) Decreasing for all $x \in \mathbb{R}$
 - Increasing for all $x > \frac{7}{6}$ (d) None of the above (c)
- x. If $f, g: \mathbb{R} \to \mathbb{R}$ are such that $f \cdot g$ is differentiable then
 - (a) Both f, g are differentiable (b) At least one of f, g is
 - (c) f + g is differentiable
- (d) None of the above

differentiable

a) Attempt any ONE question from the following: Q.2

(80)

Let (s_n) is the sequence of partial sums for series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$. Prove that (s_{2n}) is decreasing sequence and (s_{2n+1}) is increasing sequence. Further prove that

$$\lim_{n\to\infty} s_{2n} = \lim_{n\to\infty} s_{2n+1} = \lim_{n\to\infty} s_n.$$

ii. If $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = 0$ and $\sum_{n=1}^{\infty} y_n$ is absolutely convergent series then prove that series $\sum_{n=1}^{\infty} x_n$ is also convergent.

b) Attempt any TWO questions from the following:

(12)

- i. Prove that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k+3}$ is conditionally convergent series.
- ii. State the ratio test and use it to test the convergence of $\sum_{k=1}^{\infty} \frac{2^n}{n!}$
- iii. Prove that for each non-negative integer n,

$$\frac{1}{(2^n+1)^2} + \frac{1}{(2^n+2)^2} + \dots + \frac{1}{(2^n+2^n)^2} \le \frac{1}{2^n}$$

And deduce that the sequence of partial sums for series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is bounded.

- iv. Let $A, B \in \mathbb{R}$, $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$. Then prove that $\sum_{n=1}^{\infty} (Ba_n Ab_n) = 0$.
- Q.3 a) Attempt any ONE question from the following: (08)
 - i. Let f be a real valued continuous function on [a, b] such that f(a) ≠ f (b). Then for each k, f(a) < k < f(b), prove that there exists c∈ (a, b) such that f(c) = k.
 - ii. State and prove Chain Rule for the derivatives of a composite function.
 - b) Attempt any TWO questions from the following: (12)

i. Find
$$\frac{dy}{dx}$$
 if $x^3 + y^3 = 3xy$.

- ii. For $y = e^x \sin x$, prove that $y_2 2y_1 + 2y = 0$. Hence prove that $y_{n+2} 2y_{n+1} + 2y_n = 0$.
- iii. Prove that $x^3 15x + 1 = 0$ has at least one root in [-4, 4].
- iv. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \cos x$. Show that f is differentiable on \mathbb{R} .

Q.4 a) Attempt any ONE question from the following:

(80)

- State and prove Rolle's theorem.
- ii. If f is a differentiable function defined on an open interval (a,b) and $f'(x) < 0 \ \forall \ x \in (a,b)$, then prove that f is decreasing on (a,b).
- b) Attempt any TWO questions from the following:

(12)

- i. Find the local maximum and minimum of the function $f(x) = x + \frac{1}{x}$ if they exist.
- ii. Use Rolle's theorem to show that the equation $x^3 + x 1 = 0$ has exactly one real root.
- iii. For what values of x is the curve $y = x^4 6x^3 + 12x^2 + 5x + 7$ concave upwards and when is it concave downwards? Also find a point of inflection.
- iv. Verify Cauchy's Mean Value Theorem for $f(x) = x^2$ and $g(x) = x^3$, $x \in [1,2]$.
- Q.5 Attempt any FOUR questions from the following:

(20)

- a) Test for convergence of the series $\sum \frac{n^2}{2^n}$ stating the result used.
- b) Prove that $\sum x^n$ is convergent if and only if |x| < 1.
- c) Find n^{th} derivative of $y = x^2 \cos x$.
- d) If $f: \mathbb{R} \to \mathbb{R}$ is an even function and differentiable on \mathbb{R} then prove that f' is an odd function.
- e) Expand $3x^3 2x^2 + 4x + 1$ in powers of (x 1) using Taylor's theorem.
- f) Evaluate $\lim_{x\to 0^+} \frac{\log \tan x}{\log x}$.
