			(3 Hou	ırs)	[Total Marks : 100]	
N.		. All qu				
		Figures to the right indicate marks for respective parts				
	3	. Use of	Calculator is not allowed.			
Q.1	Choo	ose corre				
	i.	If li	m $a_n = 0$ then series $\sum_{1}^{\infty} a_n$ is			
		n- (a)	always convergent	(b)	always divergent	
		(c)	alternating		None of the above	
	ii.	. ,	$= e^{2x+3} \text{then } y_4 =$	100		
		(a)	$8e^{2x+3}$	(b)	$16e^{2x+3}$	
		(c)	32	(d)	none of these	
	iii.	` '	e's theorem is applicable to $f(x) =$	19 14 . A. C		
		(a)	$[0,\pi]$	6,00	$[0,\frac{\pi}{2}]$	
				900 CC 69	186420391832854	
		(c)	$\left[\frac{\pi}{2},\pi\right]$	(d)	none of these	
	iv.	The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ of real numbers is				
			1 8 4 8 9 9 9 N	(b)	conditionally convergent series	
		(a)	divergent series		Conditionary Convergent series	
		(c)	geometric series	(d)	none of these	
	v.	The f	function $f(x) = x - 4 , x \in \mathbb{R}$ is			
		(a)	differentiable at $x = 4$	(b)	not differentiable at $x = 4$	
		(c)	differentiable at any x in \mathbb{R}	(d)	none of these	
	vi.	Which of the following functions is increasing in [-1, 1]?				
		(a)	$f(x) = x^2$	(b)	$f(x) = \cos x$	
		(c)	$f(x) = \sin x$	(d)	f(x) = x	
	vii.	The series $\sum_{n=1}^{\infty} 5$ of real numbers is a				
		(a)	divergent series	(b)	convergent series	
		(c)	alternating series	(d) 8	none of these	
	viii.	Amongst the following, the function which has a local minimum at the origin is				
	2007	(a)	$y = \sin x$	(b)	$y = x^3$	
1		(c)	$\mathbf{y} = [\mathbf{x}]$	(d)	$y = x^2 - 2x + 1$	
-80.80 -80.80	ix.	$\lim_{x \to 1}$	$(x-1)^{(x-1)} =$			
		(a)		(b)	0	
100 C	000	(c)	6666544	(d)	limit cannot be determined	
320	X.	The f	The function $f(x) = x^3 + 5x + 1$, $x \in \mathbb{R}$ is			
3,50,0	300	(a)	increasing on R	(b)	increasing when $x > 0$	
E E C		(c)	decreasing on R	(d)	none of these	

Paper / Subject Code: 77215 / Mathematics : Paper I

Q.2 a) Attempt any ONE question from the following:

- (08)
- i. Prove that if $\sum_{n=1}^{\infty} a_n$ is convergent then the sequence (a_n) converges to zero. Is converse true? Justify your answer.
- ii. Prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent if it satisfies the following conditions:
 - (I) $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ i.e. sequence (a_n) is non-increasing.
 - (II) $\lim_{n \to \infty} a_n = 0$
- b) Attempt any TWO questions from the following:

(12)

- i. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ii. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of non-negative real numbers. Assume that there exists $n_1 \in \mathbb{N}$ such that $a_n \leq b_n$ for all $n \geq n_1$. Then prove that, if $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent.
- iii. Is the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ convergent? If yes, find it's limit.
- iv. Check whether the following series are convergent stating the results used.
 - I. $\sum_{n=1}^{\infty} \frac{n+1}{5^n}$, II. $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n\sqrt{n}}$
- Q.3 a) Attempt any ONE question from the following:

(08)

- i. Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions which are differentiable at $p \in \mathbb{R}$. Prove that fg is differentiable at $p \in \mathbb{R}$.
- ii. Let $n \in \mathbb{N}$ and $u, v : \mathbb{R} \to \mathbb{R}$ be n times differentiable functions. Prove that $(uv)_n = u_n v_0 + \binom{n}{1} u_{n-1} v_1 + \cdots + \binom{n}{n} u_0 v_n$ where the suffixes denote the order of derivatives and $u_0 = u$ and $v_0 = v$.
- b) Attempt any TWO questions from the following:

(12)

- i. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $H(x) = \begin{cases} \frac{f(x)\sin^2 x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ Find H'(0).
- ii. If $f: [a, b] \to \mathbb{R}$ is a continuous function then prove that f attains its bounds.
- iii. Find the derivative of the following functions using chain rule:
 - I. $\sqrt{4^x + 1}$ II. $\sin^3 x$
- iv. Find $\frac{dy}{dx}$ for $\sin y + x^2y^3 \cos x = 2y$ where y is a function of x.

Q.4 Attempt any ONE question from the following: a)

(08)

- i. For a real valued function f define local minimum at a point. If $f:(a, b) \to \mathbb{R}$ has a local minimum at a point $p \in (a, b)$ and if f is differentiable at p then prove that f'(p) = 0
- ii. State and prove Rolle's theorem.
- b) Attempt any TWO questions from the following:

(12)

- Find the intervals on which $f(x) = 4x^3 12x^2 36x + 1$ is increasing or decreasing.
- State L'Hospital's rule and evaluate $\lim_{x\to 0} \frac{1+\sin x \cos x + \log(1-x)}{x \tan^2 x}$ ii.
- Expand $x^3 + 2x + 1$ in powers of x 2. iii.
- Determine the intervals of concavity and the inflection points of iv. function $f(x) = 5x^2 - 10x$
- Q.5 Attempt any FOUR questions from the following:

(20)

- Check the following series for absolute and conditional convergence of a) $\sum_{n=1}^{\infty} (-1)^n \; \frac{n^2}{(n^4+1)}$
- Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n^3 7^n}{n!}$. b)
- Check if the following function is differentiable at x = 0c)

$$f(x) = \begin{cases} x^3 + 1, & x \le 0 \\ e^x, & x > 0 \end{cases}$$

- $f(x) = \begin{cases} x^3 + 1, & x \le 0 \\ e^x, & x > 0 \end{cases}$ If $y = e^{mx} + e^{-mx}$ then prove that $y_{n+2} = m^2 y_n$. d)
- Evaluate $\lim_{x\to 0} x \log(tanx)$. e)
- Find maximum value of $\frac{\log x}{x}$ in $(0, \infty)$. f)