VCD - MATHS II - FYBSC - SEM II EXAM - 75 MARKS - 2.5HRS -220

Note: : 1) All questions are compulsory.

- 2) For Q.1, Q.2, Q.3, attempt any one subquestion (each 8 mks) from part (a), and any three subquestions (each 4 mks) from part(b)
- 3) For Q.4 Attempt any three.(each 5 mks)
- Q.1 (a) Attempt any one

[Each 8]

1) Solve following equations using Gaussian elimination method

$$x + 7y + 3z = 11$$

$$x + y + z = 3$$

$$4x + 10y - z = 13$$

- 2) Write the note on elementary transformation and define following with example.
- i) Transpose of matrix
- ii) Diagonal matrix
- iii) Symmetric matrix
- iv) Upper and lower triangular matrix
- Q.1 (b) Attempt any three.

[Each 4]

- 1) Find Parametric equation of a plane passing through points (1,2,3), (4,5,6), (7,8,9)
- 2) Give geometric interpretation of solution of system of m homogeneous linear equations in n unknowns.
- 3) Define an invertible matrix and prove that $(A^{-1})^T = (A^T)^{-1}$ where A^{-1} , A^T are inverse and transpose of A respectively.
- 4) Define addition and multiplication of matrices and find AB, BA for following

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \\ 2 & 7 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 1 & 5 \end{bmatrix}$$

Q.2 (a) Attempt any one

[Each 8]

1) Prove that $(\mathbb{R}[x], +, \circ)$ is a vector space over \mathbb{R} where $\mathbb{R}[x] = \text{Set of all polynomials in } x$ with real coefficients.

- 2) Let V be a vector space over $\mathbb R$ and W be a nonempty subset of V. Then prove that W is a subspace of V iff $ax + by \in W$ whenever $x, y \in W$, $a, b \in \mathbb R$
- Q.2 (b) Attempt any three.

[Each 4]

- 1) Show that intersection of finitely many subspaces of a vector space V is also a subspace of V.
- 2) Express given vector $x = (1,2,0) \in \mathbb{R}^3$ as linear combination of given vectors $x_1 = (1,0,0), x_2 = (0,1,1), x_3 = (0,1,3)$
- 3) Find Linear Span of $S = \{(1,1), (0,2)\}$ of \mathbb{R}^2
- 4) Define a subspace W of a vector space V and prove that

 $W = \{(x, y, z) : z = x + y, x, y, z \in \mathbb{R}\}$ a subset of \mathbb{R}^3 is a subspace of \mathbb{R}^3 .

Q.3 (a) Attempt any one

[Each 8]

- 1) Prove that rotation of a vector X through an angle θ in anticlockwise direction is a linear transformation.
- 2) State Rank -Nulity Theorem and verify it for following

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x, x + 2y, y + 3x)

Q.3 (b) Attempt any three.

[Each 4]

1) When is the map $T: V \to U$ where V, U are vector spaces over \mathbb{R} said to be a linear transformation? check whether following map is a linear transformation or not.

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (y, 0)

- 2) Let V, U be a vector spaces over \mathbb{R} . If a transformation $T: V \to U$ is such that $T(ax + by) = aT(x) + bT(y) \quad \forall x, y \in V, \ a, b \in \mathbb{R}$ then prove that T is a linear transformation.
- 3) Let V, V' be a vector spaces over \mathbb{R} and $T: V \to V'$ be a linear transformation then prove following
 - i) Ker T is a subspace of V
 - ii) Img T is a subspace of V'.
- 4) Let V, U be vector spaces over \mathbb{R} . If $T: V \to U$ is a linear transformation then prove that

i) T(0) = 0 ii)T(-x) = -T(x) $\forall x \in V$

Q.4 (a) Attempt any three

[Each 5]

1)Define the row echelon form of a matrix and reduce following matrix in row echelon form.

$$A = \begin{bmatrix} 3 & 3 & 9 \\ 0 & 5 & 0 \\ 5 & 8 & 1 \end{bmatrix}$$

- 2) Find inverse of $A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix}$ using elementary row transformation.
- 3) If $a \neq 0$, $a \in \mathbb{R}$ then show that $\{(1+a,1-a),(1-a,1+a)\}$ is linearly independent subset of \mathbb{R}^2
- 4) Express the function $1 + 2t + 3t^2$ as linear combination of $1, 1 + t, 1 + t^2$
- 5) Prove that every finitely generated vector space has a finite basis.
- 6) Prove that Sum of Linear Transformation is also a Linear Transformation.