(Time: 3 Hours) [Total Marks: 100]

- **N.B.** 1. All questions are compulsory.
 - 2. Figures to the right indicate marks for respective parts
 - **3.** Use of Calculator is not allowed.
- Q.1 Choose correct alternative in each of the following:

(20)

- Additive inverse of a real number
 - (a) Exists and is unique
- (b) Does not exist
- (c) If exists then is unique
- (d) None of these

- ii. If A = (-4, 7] then
 - (a) $Inf A \in A$

- (b) Sup $A \in A$
- (c) Inf $A \in A$, sup $A \in A$
- (d) None of these

- iii. If 0 < x < 1 then
 - (a) $x^3 < 1$

(b) $x^3 > 1$

(c) $x^3 > x$

- (d) None of these
- iv. The sequence (x_n) where $x_n = \sin(n\pi)$, $\forall n \in \mathbb{N}$ is
 - (a) constant

(b) decreasing

(c) divergent

- (d) none of these
- v. Every Cauchy sequence in \mathbb{R} is
 - (a) an increasing sequence
- (b) divergent

(c) convergent

(d) None of these

- vi. $\lim_{x \to -2} \frac{x^2 5x 14}{x + 2}$ equals
 - (a) -13

(b) 9

(c) -9

(d) none of these

- vii. $\lim_{x \to \infty} \frac{1}{x^2 + 2x}$ equals
 - (a) 2

(b) 1

(c) 0

- (d) none of these
- viii. If sequence (x_n) of real numbers satisfies , $\frac{1}{2n} \le x_n \le \frac{1}{n}$, $\forall n \in \mathbb{N}$ then (x_n)
 - (a) converges to 0

(b) diverges

(c) converges to 1

(d) none of these

64162

- ix. The graph of a function $y = e^x$ intersects x axis
 - (a) at (0,0)

(b) nowhere

(c) at every point

- (d) none of these
- x. The function f(x) = 2x + 3 is continuous
 - (a) Only if x > 0

(b) only if x < 0

(c) For each $x \in \mathbb{R}$

- (d) None of these
- Q.2 a) Attempt any ONE question from the following:

(08)

i. State the arithmetic mean and geometric mean (AM-GM) inequality for real numbers. Apply it to prove that $(a + b)(b + c)(c + a) \ge 8abc$

 \forall non-negative $a, b, c \in \mathbb{R}$

- ii. State and prove the Archimedean order property for \mathbb{R} . Hence prove that if real number x satisfies $0 \le x < \epsilon$ for every positive real ϵ then x = 0.
- b) Attempt any TWO questions from the following:

(12)

- i. Prove that |xy| = |x||y| and $||x| |y|| \le |x y| \ \forall x, y \in \mathbb{R}$.
- ii. State the law of trichotomy of real numbers. Hence prove that the square of any non-zero real number is positive.
- iii. Find an upper bound, a lower bound, the supremum and the infimum for $\{x:x\in\mathbb{R},|x-3|\leq 4\}$ if they exist.
- iv. State only the Cauchy-Schwartz inequality for \mathbb{R} . Apply it to prove that $3(x^2 + y^2 + z^2) \ge (x + y + z)^2 \ \forall x, y, z \in \mathbb{R}$.
- Q.3 a) Attempt any ONE question from the following:

(08)

- i. Let (x_n) and (y_n) be two real sequences such that $(x_n) \to p$ and $(y_n) \to q$, then prove that $(x_n y_n) \to p q$
- ii. Prove that the real sequence $\left(1 + \frac{1}{n}\right)^n$ is convergent in \mathbb{R} .
- b) Attempt any TWO questions from the following:

(12)

- i. Prove that every convergent sequence in \mathbb{R} is Cauchy.
- ii. Use ϵn_0 definition to prove that the sequence $\left(\frac{n-6}{7n+4}\right) \to \frac{1}{7}$ as $n \to \infty$

- iii. Give an example of the following
 - a) A bounded sequence which is not convergent.
 - b) Sequences (x_n) and (y_n) such that $(x_n) \to 0$ but $(x_n y_n)$ does not converge to 0.
- iv. Prove that $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$
- Q.4 a) Attempt any ONE question from the following:

(08)

- i. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $l \in \mathbb{R}$. When do we say that $\lim_{x \to a} f(x) = l$? Prove that if $\lim_{x \to a} f(x)$ exists then it is unique.
- ii. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $p \in \mathbb{R}$. If $(f(x_n))$ converges to f(p) for any sequence (x_n) that converges to p then prove that f is continuous at p.
- b) Attempt any TWO questions from the following:

(12)

- i. Draw the graph of the function $f(x) = x^2 + 1$, for $-2 \le x \le 2$
- ii. Using $\epsilon \delta$ definition, show that the function f(x) = 3x 2, $x \in \mathbb{R}$ is continuous at p = 1.
- iii. State Sandwich theorem for limit of functions. Use it to prove that $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$
- iv. If $\lim_{x\to a} f(x) = l$ then prove that $\lim_{x\to a} |f(x)| = |l|$
- Q.5 Attempt any FOUR questions from the following:

(20)

- a) Prove that the additive identity in \mathbb{R} is unique.
- b) If A and B are bounded subsets of \mathbb{R} , then prove that $A \cup B$ is bounded in \mathbb{R} .
- Show that sequence $\left(\frac{3}{n}\right)$ is Cauchy in \mathbb{R} .
- d) Show that the sequence $\left(\frac{n-1}{n+1}\right)$ is monotonic and bounded.
- e) Find $\lim_{x \to \infty} \frac{(x-3)(2x^2-5)}{(7x+4)(x^2+1)}$
- f) For which value of b would the function

$$f(x) = x \text{ when } x < 1$$

= $bx^2 \text{ when } x \ge 1$ be continuous at $x = 1$?

64162