Paper / Subject Code: 81131 / Mathematics paper II

		(3 Hou	ırs)	[Total Marks	: 100
		l questions are compulsory. gures to the right indicate fu	ıll marks		
		_		76 6 6 6 6 6 5 7 7 6 6 6 6 7 7 7 7 7 7 7	(20
Q.1 (i.	se correct alternative in each of the following: What is the GCD of 137 and 1797?		7110W111g.	3 3 20
	1.	(a) 1	(b)	137	2000
		(c) 1797	` '	None of these	
	ii. The sum of all binomial coefficients in the expansion of (a				500
		(a) 100	4 V	256	0 7 6
		(c) 1024	(d)	None of these	15 TO 0
	iii. For positive integers a and b , $gcd(a,b) \cdot lcm(a,b)$ is				43 9 X
		(a) 1	(b)		
		(c) ab	(d)	None of these	<i>J</i>
	iv.	Let X and Y be two non-emp	oty sets a	nd $f: X \to Y$ be a function.	
		Suppose $A \subseteq X, B \subseteq Y$			
		(a) $f(A) \subseteq X, f^{-1}(B) \subseteq X$	(b)	$f(A) \subseteq Y, f^{-1}(B) \subseteq Y$	
		(c) $f(A) \subseteq X, f^{-1}(B) \subseteq Y$	(d)	$f(A) \subseteq Y, f^{-1}(B) \subseteq X$	
	v. If $A = \{a, b, c\}$, $B = \{1,2,3,4\}$. Which of the following is not a				
		function?			
				$f_2 = \{(a, 1), (b, 3), (c, 3), (c, 4)\}$	
		(c) $f_3 = \{(a, 1), (b, 2), (c, 2)\}$	2000		
	vi.	A relation $R = \{(1,1), (2,2), (1,2), (2,1)\}$ in set $X = \{1,2,3\}$ is			
			N N NO (N)	R is transitive	
	433		6 46 45 47	None of these	
E.A.	vii.	Let $A = \{1,2,3,4\}$. Which of t	V. 70 ' 62 ' 40. 4	?o^	
888		(a) {{1,2},{2,4},{3}}	2.60 7 6	{{1,2},{3,4}}}	
	50,50	(c) {{1,2},{1,4}}	(d)	None of these	
	viii.	5			
7 6 6 6 6 C	0000	root	(1)	1 1 4:	
		(a) $-1 - 4i$		-1+4i	
SAN XX	6 7 6	(c) $1+4i$	(d)	None of these	
	1X.	Degree of constant polynom	<u>.</u> .	1	
		(a) 0	(b)	None of these	
		(c) 2	(d)	None of these	
	X .	x. If one of the roots of the quadratic polynomial $(k-1)x^2 + kx - 8$ is 2, then the value of k is			
		(a) 1 $+ \kappa x - 6 \text{ is } 2$, the	ii tiie vai (b)	2	
DOLL		(a) 1 (c) 3	(d)	None of these	
N C V	F, VD.	NANO (A.C.)	(u)	TIOTIC OF MICOC	

Page 1 of 3

Paper / Subject Code: 81131 / Mathematics paper II

Q.2 a) Attempt any ONE question from the following:

(08)

- i. Show that two integers a and b, not both zero have a unique positive g.c.d. which can be expressed in the form of ma + nb, where m and n are integers.
- ii. Let the integer n > 1, has the prime factorization

$$n = P_1^{e_1} \dots P_r^{e_r}$$
 then show that

$$\phi(n) = (P_1^{e_1} - P_1^{e_1-1})(P_2^{e_2} - P_2^{e_2-1}) \dots (P_r^{e_r} - P_r^{e_r-1})$$

where ϕ denotes Euler's phi function.

b) Attempt any TWO questions from the following:

(12)

- i. For integers a, b if (a, 4) = 2, (b, 4) = 2 then prove that (a + b, 4) = 4.
- ii. State and prove Euclid's Lemma.
- iii. Find g c d of a = 879 and b = 1216 and express it in form ma + nb.
- iv. Prove $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ using principle of induction
- Q.3 a) Attempt any ONE question from the following:

(08)

- i. Let f: A → B and g: B → C be bijective functions. Prove that g∘f: A→ C is also a bijective function. Is the converse true? Justify.
- ii. Prove that an equivalence relation in a non-empty set gives a partition of that set.
- b) Attempt any TWO questions from the following:

(12)

- i. Define composition of two functions. If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are bijective functions given by f(x) = 4x + 3 and $g(x) = 2x^3$ then verify that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- ii. Let $f: X \to Y$ be any function and A_1 , A_2 be two non-empty subsets of X. Show that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- iii. Define a binary operation ∘ on Z as a∘b = ab, for a,b ∈Z. Check whether ∘ satisfies commutative and associative properties.
 Also find identity element and inverse element of a if they exist under ∘.
- iv. Define following with suitable examples, a) Identity function b) Constant function c) Bijective function.

Q.4 a) Attempt any ONE question from the following:

(08)

- i. a) Prove that a polynomial of degree n has atmost n roots.
 - b) If $f(x) \in \mathbb{R}[x]$ and $\alpha \in \mathbb{C}$ is a root of f(x), then prove that its conjugate $\bar{\alpha}$ is also a root of f(x)
- ii. If $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ be a polynomial in $\mathbb{R}[x]$ with integer coefficients and a rational number $\frac{p}{q}$, p, $q \in \mathbb{Z}$, $(p,q) = 1, q \neq 0$, is a root of f(x), prove that $p|a_0$ and $q|a_n$. Hence prove that if f(x) is a monic polynomial then it's rational root is an integer.
- b) Attempt any TWO questions from the following:

(12)

- i. Find G.C.D. of $f(x) = x^3 3x^2 + 2x 6$ and $g(x) = x^3 2x^2 2x 3$ in $\mathbb{R}[x]$.
- ii. Find k in $f(x) = x^3 4x^2 4x + k$ if sum of two of its roots is equal to the third root.
- iii. Solve $4x^3 + 20x^2 23x + 6 = 0$ given that two of its roots are equal.
- iv. Find the fourth roots of unity and show that their sum is zero.
- Q.5 Attempt any FOUR questions from the following:

(20)

- a) Prove that $3 \mid a(a+1)(a+2)$ for any arbitrary integer a.
- b) State Wilson's theorem and verify it for prime 11.
- c) If $f : \mathbb{R} \{\frac{4}{5}\} \to \mathbb{R} \{0\}$ such that $f(x) = \frac{1}{5x 4}$, show that f is bijective and hence find the inverse of f.
- d) A relation R in \mathbb{Z} is defined as "xRy iff 5x y is divisible by 4". Show that R is a equivalence relation.
- e) State Factor theorem and hence check whether g(x) = x + 1 is a factor of $f(x) = x^4 2x^3 + 2x^2 3x + 2$.
- f) Find the multiplicity of the root 2 of $f(x) = x^4 3x^3 + 3x^2 8x + 12$.
