- Note: 1. All questions are compulsory.
 - 2. Figures to the right indicate marks.
 - 3. Draw neat, labelled diagrams wherever necessary.
 - 1. a) Attempt any ONE question from the following:

(08)

- i. State and prove Binomial theorem for $n \in \mathbb{N}$
- ii. Prove, for every integer n > 1 can be expressed as a product of positive primes and this expression is unique for order in which prime factors occur.
- b) Attempt any TWO questions from the following:

(12)

- i. Prove that by using finite method of induction $3^{2n+2} 8n 9$ is divisible by 64 for $n \in \mathbb{N}$
- ii. Find the smallest positive integer to which 10⁵¹⁵ is congruent modulo 7.
- iii. Prove that ((a, b), c)) = (a, (b, c))
- 2. a) Attempt any ONE question from the following:

(08)

- i. Let a, $b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Define a relation R in \mathbb{Z} as,
- aRb iff $a \equiv b \pmod{n}$ then prove that R is an equivalence relation.
- ii. Define: Binary operation, commutativity, associativity, existence of identity element and existence of inverse element. Check all the properties for
 - $a * b = |ab| \operatorname{in}|R \setminus \{0\}$
- b) Attempt any TWO questions from the following:

(12)

- i. Write the distinct residue classes modulo 6 and the addition table modulo 6.
- ii. Define partition of a set and list any 5 partitions of set {a, b, c, d, e}
- iii. Check whether $f: \mathbb{R} \setminus \left\{ \frac{-2}{7} \right\} \to \mathbb{R} \setminus \left\{ \frac{2}{7} \right\}$ given by $f(x) = \frac{2x-3}{7x+2}$ is bijective.
- 3. a) Attempt any ONE question from the following:

(08)

- i. Define Divisibility in $\mathbb{R}[x]$. State Division Algorithm in $\mathbb{R}[x]$. Also state and prove Remainder Theorem.
- ii. State and prove Unique Factorization Theorem in IR [x].
- b) Attempt any TWO questions from the following:

(12)

- i. Find the G.C.D. of polynomials $f(x) = x^8 1$ and $g(x) = x^{12} 1$ over $\mathbb{Q}[x]$.
- ii. Define irreducible polynomials. And if p(x) is irreducible polynomial in R[x]. Prove that, If p(x) does not divide a(x) in R[x], then (p(x), a(x)) = 1.
- iii. Find the multiplicity of each root of $f(x) = 4x^3 + 4x^2 x 1$

(15)

- 4. Attempt any THREE questions from the following:a) Show that 3927 and -377 are co-prime.
 - b) Define Euler ϕ function and hence find $\emptyset(5040)$
 - c) Check whether following relation is reflexive, symmetric, transitive or equivalence relation: xRy if 17 | x y in R
 - d) Check whether the function $f: \mathbb{Q} \to \mathbb{R}$ given by f(x) = 2x + 3 is bijective or not.
 - e) If r_1 , r_2 , r_3 are the roots of polynomial $x^3 4x^2 + 5x + 1$, without actually calculating the values of r_1 , r_2 , r_3 , write polynomial with roots $3r_1$, $3r_2$, and $3r_3$.
 - f) Find the cube roots of unity.

XXXXXX