100 MARKS, 21/2 HOURS

NOTE: - 1) All questions are compulsory.

2) Figures to right indicate full marks of each sub-question.

Q.1) Choose correct alternative in each of the following.

(20)

- I. a) Every subset of positive integers has the least element.
 - b) Every non-empty subset of positive integers has the largest element.
 - c) Every non-empty subset of N, has the least element.
 - d)1 is the least element of every non-empty subset of positive integers.
- II. For integers r, s and n, n > 0 the value of $(r+s)^n + (r-s)^n$?
 - a) Is always even.
- b) Is always odd.
- c) Depends on n.
- d) Depends on r & s.
- III. If a/b and a/c then a^2 / bc is?
 - a) Always true.
- b) Never true
- c) Valid only when a = 0
- d) Valid only when a = 1.
- IV. The integers 15239 and 15240 are?
 - a)Co-prime
- b) Not co-prime
- c) Their g.c.d. is O
- d) Their g.c.d. is a prime.
- V. If every pair of integers satisfy a = b (modn) then n is?a) 0 b) 1 c) 2 d) 3
- VI. The unit digit of 3¹⁰ is...?
 - a) 0 b) 9 c) 1 d) -1
- VII. A function from A to B, is b is bijective, if it is...?

 a)One-one b)Onto c)One-one and onto d)Depends on A and B
- VIII. A relation on \mathbb{Z} , given by a and b if $a \neq b$ is...?
 - a) Reflexive b) Symmetric c) Transitive d) An equivalence relation
 - IX. A monic polynomial is the one whose...?
 - a)Degree is 1 b)Leading coefficient is 1 c) Constant term is 1 d)All the coefficients are 1
 - X. If w is a complex n^{th} root of $\mathcal{X}^n = 1$ such that, $1 + w + w^2 + w^3 + w^4 = 0$ then the smallest positive value of n is...?
 - a) 4 b) 5
- c) 6
- d) 9

- State and prove division algorithm in Z. I.
- Prove that every integer n > 1, can be expressed as a product of positive primes also II. prove that expression is unique except for the order in which the prime factors occur.

Q.2-B) Attempt any TWO questions from the following.

- Using method of finite induction prove that the following example is true for all $n \in \mathbb{N}$ $1-2+2-3+3-4+....n(n+1) = \frac{n}{3}(n+1)(n+2)$
- Prove in usual notations that for $n \in \mathbb{N}$. II.
 - a) ${}^{n}c_{0} + {}^{n}c_{1} + {}^{n}c_{2} + \dots {}^{n}c_{n} = 2^{n}$
 - b) ${}^{n}c_{0} {}^{n}c_{1} + {}^{n}c_{2} + \dots + (-1)^{n} {}^{n}c_{n} = 0$
- State and prove Euclid's Lemma III.
- If m and n are two integers such that (m, n) = 1 then prove that $\emptyset(mn) = \emptyset(m)\emptyset(n)$ IV.

Q.3 A) Attempt any ONE question from the following.

- I. $F: X \rightarrow Y$ and A & B are non-empty subsets of X and Y respectively. Then prove that.
 - a) $\mathcal{A} \subseteq f^{-1}(f(A))$ then equality holds if and only if f is injective.
- b) $f(f^{-1}(b)) \subseteq B$ The equality holds if and only if f is surjective.
- If ~ is equivalence relation on a non-empty set X, then prove the following.
 - a) Each element of X belongs to some equivalence class of X.
 - b) Any two equivalence classes of X are either disjoint or identical.
 - c) Union of these equivalence classes is X.

Q.3 B) Attempt any TWO questions from the following.

I.
$$f: \mathbb{R} - \left\{-\frac{3}{5}\right\} \to \mathbb{R} - \left\{\frac{9}{5}\right\}$$
, given by $\frac{9x+5}{5x+3}$

prove the above function with the given domain and co-domain is a bijection. Also find corresponding inverse function.

- $F: x \rightarrow y$ is a function B_1, B_2 are any two non-empty subsets of y, prove that. II. $B_1 \subseteq B_2 \Longrightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ Is the converse true? Justify your answer.
- A binary operation 'o' is defined on $\varphi \{0\}$ as follows $aob = \frac{ab}{6}$ for a, b in $\varphi \{0\}$ III. Show that 'o' satisfies all the properties stated in binary operation.
- For the following relation, defined on the given set x, find whether it is (i) reflexive IV.
 - (ii) symmetric (iii) transitive if the relation is equivalence state its equivalence classes.
 - X: the set of integers Z
 - R: for a, $b \in \mathbb{Z}$, a R b if and only if 2a + b is divisible by 3.

Q.4 A) Attempt any ONE question from the following.

(08)

- I. Prove that a polynomial in C[x] of degree n has exactly n complex roots, counted with multiplicities.
- II. State and prove rational root theorem.

Q.4 B) Attempt any TWO questions from the following.

(12)

- I. State and prove Remainder Theorem.
- II. By dividing f(x) by g(x) find the quotient and remainder in $\mathbb{R}[x]$ $F(x) = x^3 - 4x^2 + x + 6$, $g(x) = x^2 - 1$
- III. If $p(x) \mid a(x) b(x)$, a(x), b(x) in $\mathbb{R}[x]$ then prove that p(x)/a(x) or p(x)/b(x) in $\mathbb{R}[x]$
- IV. Find all rational roots and their multiplicity of $12x^3 16x^2 + 7x 1$

Q.5) Attempt any FOUR questions from the following.

(20)

- I. Find the gcd of the given pair of numbers and express it as a linear combination of the given pair 1008, 357.
- II. Verify Wilson's Theorem for p = 13.
- III. Define the following terms.
 - a) Cartesian product of two sets.
 - b) Functions [mappings]
- IV. $F: X \rightarrow Y, g: Y \rightarrow Z$ are two functions such that, gof is bijective and f is subjective, then prove that, g is injective.
- V Let $f(x) \in \mathbb{R}[x]$ let $x \in \mathbb{C}$, be a root of f(x) = 0 then prove that conjugate of $x \in \mathbb{R}[x]$ is also a root of f(x) = 0
- VI. Find all roots of $f(x) = x^3 3x^2 4x 12$ if sum of its two roots is zero.