VCD - 9/10/17- MATHS I - FYBSC - SEM I ATKT EXAM - 75 MARKS - 21/2 HRS

All questions are compulsory.

For Q.1, Q.2 and Q. 3 attempt any one subquestion (each 8 marks) from part NOTE: For Q.1, Q.2 and Q. subquestions (each 4 marks) from part (b). 2)

- For Q.4, attempt any three.(each 5 marks) 3)
- Attempt any one. [each 8] Q.1. (a)
- For $a, b, c \in IR$ prove the following 1)

$$a < b \Rightarrow -a > -b$$

ii)
$$a < b \Rightarrow a + c < b + c$$

iii)
$$a > b \& c < 0 \implies a < c$$

$$a > b \& c > 0 \implies ac < bc$$

- State all properties of addition of IR = set of real numbers. 2)
- Attempt any three. [each 4] (b)
- Find LUB and GLB of $S = \{1/n/n \in IN\}$ 1)

LUB= Least Upper Bound

GLB = Greatest Lower Bound

- State and prove AM GM inequality of IR. 2)
- State and prove Hausdorff property of neighbourhood. 3)
- Prove that if a_n is convergent sequence then it is bounded. 4)
- Attempt any one. [each 8] (a) Q.2.
- State and prove Sandwich theorem for sequence. Hence discuss the 1) convergence of $a_n = \frac{1}{n!}$
- Define the Cauchy sequence in IR and show that following 2) sequences are not Cauchy in IR

i)
$$a_n = (n^2)$$
 $n \in \mathbb{N}$ *ii*) $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ $\forall n \in \mathbb{N}$

Attempt any three. [each 4] (b)

- Examine whether the following sequences are monotonic 1)
 - i) $a_n = (-1)^n$
- $ii) a_n = \sin n$
- Prove that if a_n & b_n are two convergent sequences having 2) limits a and b respectively then prove that $(a_n + b_n)$ converges and $\lim_{n\to\infty}(a_n+b_n)==a+b$.
- State and prove Cauchy completeness of IR. 3)
- Define a subsequence and prove that every bounded sequence in 4) IR has convergent subsequence.
- Attempt any one. [each 8] Q.3. (a)
- 1) Let f, g be real valued function defined on subset $J \subseteq IR$ and

$$\lim_{x\to a} f(x) = l$$
, $\lim_{x\to a} g(x) = m$ then prove that $\lim_{x\to a} f(x) \cdot g(x) = l \cdot m$.

- prove that $\lim_{x\to a} f(x) = l$ iff $\lim_{n\to\infty} f(x_n) = l$ for every sequence x_n 2) converging to a $(x_n \neq a)$
- Attempt any three. [each 4] (b)
- Define the following functions 1)
 - i) Constant function
 - ii) Absolute value function
 - Prove that Let f be real valued function on subset I of IR. Let $P \in I$, if 2) $\lim_{x\to P} f(x)$ exists then it is unique.
 - Define right hand and left hand limits and evaluate right and left hand limits 3) f as $\lim_{x\to P} f(x)$ in following case

$$f(x) = x - 1$$
 for $x \le 0$
= $1 - x$ for $x > 0$ at $P = 0$

- Let $f,g:J\to IR$ be continuous at $P\in J$ where J is an open interval in IR 4) then prove that $f+g: J \rightarrow IR$ continuous at P.
- Q.4. Attempt any three. [each 5]
 - Define neighbourhood in IR and prove that intersection of 1) any two neighbourhood $P \in IR$ is the neighbourhood of P.

- 2) Discuss the boundedness of $S = \{x/3 < x \le 7\}$, $S = \{\sin x/x \in IR\}$
- 3) Show that every monotonic decreasing sequence is bounded above.
- 4) State all algebraic operations on sequences.
- Define $\epsilon \delta$ definition of continuity of a function at a point P also explain graphical meaning of continuity of a function.
- 6) Let f be real valued defined on subset $I \subseteq IR$. Let $P \in I$, if $\lim_{x\to P} f(x)$ exists then prove that it is unique