(3 Hours) [Total Marks : 100

- N.B.: 1. All questions are compulsory.
 - 2. Figures to the right indicate full marks.
- Q.1 Choose correct alternative in each of the following:

(20)

i. For $x, y, z \in \mathbb{R}$ if xy = xz then

- (a) y = z
- (c) x = 0

- (b) y = z only if $x \neq 0$
- (d) None of these.

(b) x = 0 or y = 0

ii. For $x, y \in \mathbb{R}$ if xy = 0 then

- (a) x = 0 and y = 0
- (a) x = 0 and y = 0(c) x - y = 0
- (d) x = y
- iii. Between any two distinct real numbers there always exists
 - (a) Only rational numbers
- (b) Both rational and irrational numbers
- (c) Only irrational numbers
- (d) None of these.
- iv. Every nonempty subset of R which is bounded below has
 - (a) glb in \mathbb{R}

- (b) lub in ℝ
- (c) glb and lub in \mathbb{R}
- (d) Neither glb nor lub in \mathbb{R}
- v. The sequence (x_n) where $x_n = \frac{1}{3n}$, $\forall n \in \mathbb{N}$ is
 - (a) convergent

(b) divergent

(c) unbounded

- (d) None of these.
- vi. The sequence (x_n) where $x_n = n^3$, $\forall n \in \mathbb{N}$ is
 - (a) convergent

(b) monotonic increasing

(c) Cauchy

- (d) bounded
- vii. The value of $\lim_{n \to \infty} 3x^n$ for $0 < x < \frac{1}{4}$ is
 - (a) 1

(b) 2

(c) -1

- (d) 0
- viii. The value of $\lim_{x \to 0^+} \frac{|x|}{x}$
 - (a) 1

(b) Does not exist

(c) -1

(d) None of these

Turn Over

(08)

(12)

- Which of the following function has removable discontinuity at x = 3?

(b) $\cos\left(\frac{1}{x-3}\right)$

- (d) None of these
- The function $f(x) = \sin(2x + 3)$, $x \in \mathbb{R}$ is
 - (a) Continuous everywhere
- (b) Discontinuous at $x = -\frac{3}{2}$
 - (c) Continuous only for $x \ge 0$ (d) None of these
- Q.2Attempt any ONE question from the following:
 - Prove that a nonempty subset of \mathbb{R} which is bounded below has glb in \mathbb{R} .
 - If x and y are any real numbers with x < y then prove ii. that there exists a rational number r such that x < r < y.
 - b) Attempt any TWO questions from the following:
 - i. Let *S* be a nonempty subset of \mathbb{R} which is bounded above. Prove that lub *S* is unique.
 - ii. Let S be a nonempty subset of \mathbb{R} . For $a \in \mathbb{R}$, define aS = $\{as: s \in S\}$. If S is bounded above then prove that lub aS =a lub S if a > 0.
 - iii. If x > 0 then show that there exists $m \in \mathbb{N}$ such that $m-1 \le x < m$.
 - iv. State and prove Hausdorff property of \mathbb{R} .
- a) Attempt any ONE question from the following: (08)Q.3
 - i. Define subsequence of a sequence in \mathbb{R} . Prove that every subsequence of a convergent sequence is convergent.
 - ii. Prove that every monotonic decreasing sequence of real numbers is convergent if it is bounded below.
 - b) Attempt any TWO questions from the following: (12)
 - i. Prove that the limit of sequence (x_n) is $\frac{2}{3}$ using definition where $x_n = \frac{2n+3}{3n+2}$, $\forall n \in \mathbb{N}$

Turn Over

- ii. Prove that every Cauchy sequence of real numbers is bounded.
- iii. Let (x_n) and (y_n) be two convergent sequences of real numbers converging to p and q respectively. Prove that the sequence $(x_n y_n)$ converges to p q.
- iv. Show that the sequence (x_n) is divergent where $x_n = (-1)^n$, $\forall n \in \mathbb{N}$.
- Q.4 a) Attempt any ONE question from the following: (08)
 - i. Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions and let $a \in \mathbb{R}$, if $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$, then prove that $\lim_{x \to a} (9f 2g)(x) = 9l 2m$.
 - ii. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function at $p \in \mathbb{R}$. Prove that sequence $(f(x_n))$ converges to f(p) for any sequence (x_n) converging to p.
 - b) Attempt any TWO questions from the following: (12)
 - i. Prove that $\lim_{x \to 6} (4x + 6) = 30$ using $\epsilon \delta$ definition of limit.
 - ii. Draw graph of a function e^{x+2} for $x \in \mathbb{R}$.
 - iii. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $l \in \mathbb{R}$. Give definition of $\lim_{x \to \infty} f(x) = l$ and also find $\lim_{x \to \infty} \frac{x^4 + 5}{5x^4}$.
 - iv. Discuss the continuity of the following function at x = 6 where $f(x) = \begin{cases} x^2 + 10 & \text{if } x < 6 \\ x 20 & \text{if } 6 \le x \end{cases}$
- Q.5 Attempt any FOUR questions from the following: (20)
 - a) State and prove the Arithmetic-Geometric mean inequality for $a, b \in \mathbb{R}$.
 - b) Prove that $||x| |y|| \le |x y|$ for all $x, y \in \mathbb{R}$.

Turn Over

- c) Let $x_n = \frac{1}{5n}$, $\forall n \in \mathbb{N}$. Show that (x_n) is a Cauchy sequence.
- d) Show that (x_n) converges to 3 using definition where $x_n = 3$, $\forall n \in \mathbb{N}$.
- e) Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Prove that if $\lim_{x \to a} f(x) = l$ then $\lim_{x \to a} |f(x)| = |l|$. Is the converse true? Justify your answer.
- f) State Sandwich theorem for limit of function. Use it to find $\lim_{x \to 4} f(x) \text{ where } 1 \frac{(x-4)^2}{4} \le f(x) \le 1 + \frac{(x-4)^2}{4} \text{ for all } x \in \mathbb{R}.$

