and prove that if P is partition of non empty set X then P induces equivalence relation on X.

- (b) Atten₁, ? ... ee. [each 4]
 - 1) Check whether * is binary on given set

i)
$$a * b = 5a + b$$
 on \mathbb{Z}^+

ii)
$$a + b = a \div b$$
 on IR $-\{0\}$

Determine whether each relation from A to B. If it is function give its range.

$$A = \{a, b, c, d\}, B = \{6,7,8,9\}$$

$$g = [(a,6), (b,7), (c,8), (d,9)], h = \{(a,6), (c,7), (d,7), (b,9)\}$$

- Let $f: IR \{3\} \to IR \{0\}$ be defined by $f(x) = \frac{1}{x-3}$ then prove that f is bijective and Find formula for f^{-1} .
- Determine whether following relation R on set A is equivalence or not a R b iff a + b is even $a, b \in \mathbb{Z} = A$.
- Q.3. (a) Attempt any one. [each 8]
 - State and prove Remainder theorem for polynomial $f(x) \in F[x]$ and compute the remainder when f(x) is divided by g(x).

$$f(x) = x^3 + 2x + 3$$

$$g(x) = x + 3$$

2) State and prove Factor theorem for $f(x) \in F[x]$ Use it to determine whether or not g(x) is factor of f(x).

$$f(x) = 3x^3 + 7x + 9$$
, $g(x) = x + 5$

- (b) Attempt any three. [each 4]
 - 1) Prove that a non constant polynomial $f(x) \in F[x]$ can be expressed as product of linear and quadradic polynomial.
 - 2) Express 5i in polar form and also find magnitude and amplitude.

$$f(x) = x^3 - 6x^2 + 7x - 7$$

$$g(x) = x^2 + 3$$

4) Prove that $\sqrt{7}$, is irrational

Attempt any three. [each 5]

Q.4.

- Prove that two integers a and b are congruent modulo a positive integer iff a and b leave same remainder when divided by n.
- 2) Using Euler's theorem prove $5^{303} = 4 \pmod{11}$.
- If R is an Equivalence relation on a non empty set X then prove that any two equivalence classes of X are either identical or disjoint.
- Show that $f: A \to B$, $g: B \to C$ are function then for any nonempty subset X of A.

$$(gof)(X) = g(f(X))$$

- 5) State and prove Rational Root theorm.
- 6) Use De Moivre's theorem to prove that

$$\sin 3\theta = 3\cos^2\theta \sin\theta - \sin^3\theta$$

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta$$