A.T.K.L.Y.B.	Sc Maths II old	mathema	AIK IT	
Q.P. Code - SCIM020316Y	Sem-I 2015-16 /	1 0:1 /	^ ^	
20210200104	2015-16	3/3/16	f.4.5	em - I PG-2 -):

Note: 1) All questions are compulsory.

- 2) For Q.1, Q.2, Q.3 attempt any one sub question (Each 8 Marks) from Part (A) and Any three Subquestion (Each 4 marks) from Part (B).
- 3) For Q.4 attempt any three (Each 5 marks)

Q. 1 A) Attempt Any One: (Each 8 marks)

- 1) Define Euler ϕ function $\phi(n)$ for positive integer $n \ge 1$ and prove that if $m, n \in \mathbb{Z}$ such that ged (m,n) = 1 then $\phi(m,n) = \phi(m) \phi(n)$ also find $\phi(580)$
- 2) Find greatest common divisor of 3120 and 750 and express it in form of 3120m + 750m, $m,n \in \mathbb{Z}$. Are m,n unique? Justify.
- B) Attempt Any Three: (Each 4 marks)
- 1) Explain Pascal's Triangle. Use it to find $(a + b)^7$.
- 2) Prove that the number of primes are infinite.
- 3) Define least common multiple and greatest common divisor of non zero integer a and b. Prove that ged (a, b) Lcm [ab] = ab.
- (.) State first principle of finite induction and prove that $8^n 3^n$ is divisible by $5 \forall n \in \mathbb{N}$.

Q. 2 A) Attempt Any One: (Each 8 marks)

- 1) Define invertible function, bejective function. Prove that composition of injective function is injective.
- 2) Define:
 - i) Equivalence relation R on nonempty set A
 - ii) Partition of A. Prove that every partition of a nonempty set A induces equivalence relation R on A.
- B) Attempt Any Three: (Each 4 marks)
- 1) Check whether * is binary on given set.
 - i) a * b = a + b on IN.
 - ii) $a * b = \min \{a, b\}$ on IR.
- 2) Lef F: IR \rightarrow IR be defined by f(x) = 3x 7. Check whether f is bijective or not. Hence find inverse if exist.
- 3) Determine whether following relation R on set A is equivalence a not.

A = list of relations among people.

R is defined as $(x, y) \in R$ if x is brother of y.

4) Determine whether each relation from A to B is function. If it is function give its range.

$$A = \{a, b, c, d\} B = \{2, 6, 8\}$$

$$F = \{(a, 2), (a, 6), (b, 6), (c, 6), (d, 8)\}$$

$$g = \{(a, 2), (b, 6), (c, 6), (d, 8)\}$$

P.T.O.

Q. 3 A) Attempt Any One: (Each 8 marks)

1) State and Prove Remainder Theorem for polynomial $f(x) \in f(x)$ and Computer remainder when f(x) is divided by g(x).

$$f(x) = x^5 - 3x^4 + 4x^3 + x + 4$$

$$g(x) = x + 1$$

- 2) State and Prove factor theorem. Use it to determine whether or not g(x) is factor of $f(x) = x^4 + 4x^3 + 3x^2 + x + 5$, g(x) = x + 2
- B) Attempt Any Three: (Each 4 marks)
- 1) Prove that a polynomial of degree n has at most n roots.
- 2) Express $\sqrt{3} + i$ in polar form, also find magnitude & amplitude.
- 3) Find quotient and remainder when f(x) is divided by g(x).

$$f(x) = 5x^6 - 3x^2 + x + 1$$

$$g(x) = x^2 + x - 1$$

4) Prove that a non constant polynomial $f(x) \in F(x)$ can be expressed as product of linear and quadratic polynomial.

Attempt Any Three: (Each 5 marks)

- 1) State and prove Euclid's Lemma.
- 2) Verify Wilson Theorem for P = 11.
- 3) Prove that $a \equiv b \pmod{n}$ for a, b, $n \in \mathbb{Z}^+$ iff a,b leave same remainder when divided by a
- 4) If R is an equivalence relation on nonempty set X. Then Prove that any two equivalence classes of X are either identical or disjoint.
- 5) Use Demoivre's Theorem to prove that

$$\sin 3\theta = 3\cos^2\theta \sin\theta - \sin^3\theta.$$

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta.$$

6) State and prove Rational Root Theorem.

—— The End ——