Subject: Elective: Digital Signals and system
T.Y. J.T. - Digital signal system

sem-III - A.T. K. T 2016-17

QP Code: 78183

(21/2 hours)

N. B.: (1) All questions are compulsory.

- (2) Make suitable assumptions wherever necessary and state the assumptions made
- (3) Answers to the same question must be written together.

(4) Numbers to the right indicate marks.

- (5) Draw neat labeled diagrams wherever necessary.
- (6) Use of Non-programmable calculators is allowed.

Attempt any two of the following:

10

- With illustration, explain shifting, folding and time scaling operation on discrete-time
- How are continuous and discrete time systems classified? Explain,
- Determine the inverse Fourier transform of the spectrum shown in fig.

- $\stackrel{(=)}{=}$ 't cos at and $f(t) = e^{-at}$ sinbt Find the Fourier transform of f(t)
- Attempt any two of the following

10

- Find the Laplace transform of the following functions

 - $f(t) = \cos^3 3t$
 - Derive from the principals, the laplace transform of a unit step function. Hence or
- otherwise determine the Laplace transform of a unit ramp function and a unit impulse function
- If L{ $f_1(t)$ } = $F_1(s)$ and L{ $f_2(t)$ } = $F_2(s)$, show that L{ $f_1(t)$. $f_2(t)$ } = $F_1(s)$. $F_2(s)$
- Discuss initial value and final value theorem in Laplace transform domain.
- Attempt any two of the following:

10

- A system has an impulse response $h(n) = \{1,2,3\}$ and output response $y(n) = \{1,1,2,-1,3\}$. Determine the input sequence x(n).
- Define and explain cross-correlation and auto-correlation of sampled signals.
- c. Using residue method find the inverse z-transform of

$$X(z) = \frac{1}{(z-0.25)(z-0.5)}$$
, ROC: $|z| > 0.5$

Using convolution find
$$x(n)$$
 if $X(z)$ is given by:
$$X(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

[TURN OVER

VJ-Con.971-16.

2270191

-2-

4.	Attempt	anv to	vo of th	e following:
•••	- verombe	wiey er	FU UA LIII	c rono wine.

Explain the Paley - Wiener criteria.

The discrete time systems are represented by the following difference equations in which x(n) is input and y(n) is output.

i.
$$y(n) = 3y^2(n-1) - nx(n-1) - 2x(n+1)$$
 and

 $y(n) = x(n+1) - 3x(n) + x(n-1); n \ge 0$

Are these systems linear? Shift-invariant? Causal? In each case justify your answer. Consider a causal and stable LTI system whose input x(n) and output y(n) are related through the second order difference equation

$$y(n) - \frac{1}{12}y(n-1) - \frac{1}{12}y(n-2) = x(n)$$

Determine the step response for the system.

Find the convolution of the two signals x(n) = u(n) and $h(n) = a^n u(n)$, ROC: |a| < 1; $n \ge 0$?

Attempt any two of the following:

10

Find the circular periodic convolution using DFT and IDFT of the two sequences: $x(n) = \{1, 1, 2, 2\}$ and $h(n) = \{1, 2, 3, 4\}$

b. Derive the DFT for the sample data sequence $x(n) = \{1, 1, 2, 2, 3, 3\}$ and compute the corresponding amplitude and phase spectrum.

Find the discrete time Fourier transform for the following finite duration sequence of length L:

length L:

$$x(n) = A$$
 for $0 \le n \le L - 1$

= 0 otherwise. Also find the inverse DTRT to verify x(n) for L = 3 and A = 1V.

Find the 4-point DFT of the sequence $x(n) = \cos \frac{n\pi}{n}$

10

Attempt any two of the following: Design an analog BPF to satisfy the following specifications:

(i) 3 dB upper and lower cut-off frequencies are 100 Hz and 3.8 kHz

(ii) stop band attenuation of 20 dB at 20 Hz and 8 kHz.

(iii) No ripple with both passband and stopband.

A low mass filter has the desired response as given below

$$H_d(e^{j\omega}) = e^{-j3\omega} \ 0 \le \omega \le \frac{\pi}{2}$$

Determine the filter coefficient h(n) for M=7,using Type-I frequency sampling

Design a bandpass filter to pass frequencies in the range 1-2 rad/sec using Hanning window N = 5.

Design a digital Chebyshev filter to satisfy the constrains

Design a digital Calcology
$$0.707 \le \left| H(e^{j\omega}) \right| \le 1$$
, $0 \le \omega \le 0.2\pi$ $0.5\pi \le \omega \le \pi$ $0.5\pi \le \omega \le \pi$

Using bilinear transformation and assuming T = 1s.

[TURN OVER

VJ-Con.971-16.

7. Attempt any three of the following:

State and prove that convolution theorem for Fourier transform.

In the parallel RLC circuit. $I_0 = 5$ A, L = 0.2 H, C = 2 F and R = 0.5 Ω . Switch S is opened at time t=0. Obtain the complete particular solution for the voltage v(t) across the parallel network. Assume zero current through inductor L and zero voltage across capacitor C before switching.

For a low pass RC network, $R = 1 \text{ }M\Omega$ and $C = 1 \text{ }\mu\text{F}$. Determine the output response for n in the range $0 \le n \le 3$ when input has a step response of magniture 2 V and the

sampling frequency $f_s = 50$ Hz.

Distinguish between IIR and FIR systems.

An FIR digital filter has the unit impulse response sequence, h(n) ={2,2,1}. Determine the output sequence in response to the input sequence $\mathbf{x}(\mathbf{n}) = \{3,0,-2,0,2,1,0,-2,-1,0\}$ using the overlap-add gonvolution method.

Design a Finite Impulse Response low pass filter with a cut-off frequency of 1kHz and f.

CS.

sampling rate of 4kHz with eleven samples using Fourier series.

7.019/20162323024

VJ-Con.971-16.

3