QP Code: 12935

 $2\frac{1}{2}$ Hours]

[Total Marks: 75

N.B.: (1) All questions are compulsory.

deush Shed up

(2) Figures to the right indicate marks for respective subquestions.

1. (a) Answer any ONE

- i. State and prove the Cayley Hamilton theorem. (8)
- ii. Let V be a finite dimensional inner product space over R and T: V → V be a linear transformation. Prove that the following statements are equivalent.
 (p) T is orthogonal.
 - (q) ||T(x)|| = ||x|| for all $x \in V$.

(b) Answer any TWO

- i. For real vector space V and a subspace W of V define quotient space V/W.
 Let V be a finite dimensional real vector space and W be a subspace of V.
 Show that dimV/W = dimV dimW.
- ii. Let V be a finite dimensional inner product space over \mathbb{R} . If $f:V\to V$ is an isometry, then show that there exists unique $x_0\in V$ and an orthogonal linear transformation $T:V\to V$ such that $f(x)=T(x)+x_0, \forall x\in V$.
- iii. Find an orthogonal transformation in \mathbb{R}^3 which represents reflection with . (6) respect to x y + z = 0.
- iv. Show that a 2×2 orthogonal matrix A with det A = 1 is a matrix of rotation. (6)

2. (a) Answer any ONE

- i. Define algebraic multiplicity and geometric multiplicity of an eigen value λ (8) of a real matrix A. Show that, if A is diagonalizable then (a) algebraic and geometric multiplicity of each eigen value of A coincide (b) sum of geometric multiplicity of all the eigen values of A is n.
- ii. Show that every real symmetric matrix is orthogonally diagonalizable. (8)

(b) Answer any TWO

i. Show that every quadratic form $Q[x] = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ over \mathbb{R} can be reduced (6)

to standard form $\sum_{i=1}^{n} \lambda_i y_i^2$ by orthogonal change of variable X = PY, where X, Y are column vectors of \mathbb{R}^n .

- ii. Let A be $n \times n$ upper triangular real matrix.
 - (p) If all the main diagonal entries of A are distinct, then show that A is diagonalizable.
 - (q) If each main diagonal entries of A is λ and A is diagonalizable then show that $A = \lambda I_n$.

[P.T.O.]

(6)

CM-Con. 2782-15.

iii. Find a square matrix A of order 3 which has eigen values 0,1,-1 with corresponding eigen vectors $(0,1,-1)^t$, $(1,-1,1)^t$ and $(0,1,1)^t$.

iv. Show that an $n \times n$ real symmetric matrix is positive definite if and only if

all its eigen values are positive.

Circolor Po

3. (a) Answer any ONE

i. G be a finite cyclic group of order n. Prove that G contains a unique subgroup of order d, for every divisor d of n.

ii. Let G be a group and H and K be any two subgroup of G. Show that HKbe subgroup of G if and only if HK = KH.

(b) Answer any TWO

i. If $f:G\to G'$ is a group homomorphism then define kernel of f and prove that kernel of f is a subgroup of G.

ii. Let G, G' be groups and $f: G \to G'$ be a onto homomorphism of groups. Show that

(p) If G is abelian then G' is abelian.

(q) G is cyclic and $G = \langle a \rangle$ then G' is cyclic and $G' = \langle f(a) \rangle$.

iii. Let $G = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$ under multiplication of residue classes mod 40. Form composition table of G. State identity element of G and show that G is group.

iv. Give an example of a group G such that o(c) = 2, o(b) = 2 and o(ab) = 5.

4. Answer any THREE

(a) Let A, B be $n \times n$ real matrices. If A and AB are orthogonal then prove that Band BA are both orthogonal matrices.

(b) Let $A = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$. A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

 $T(X) = AX(X \text{ being a column vector sin } \mathbb{R}^3)$. Find kerT and ImT. Verify the fundamental theorem of homomorphism of vector spaces incase of T.

0 | is diagonalizable or not. (c) Determine whether matrix A =

(d) Show that eigen vector associated with distinct eigen values of real symmetric matrix are or inogonal.

(e) Show that a group G is abelian if and only if $f: G \to G$ define as $f(x) = x^2$ is a group homomorphism.

(f) If G is a finite group and H is a nonempty subset of G then prove that H is subgroup of G if and only if for any $a, b \in H$, $ab \in H$.