Q. P. Code: 20944

(Time: 2½ hours)

Total Marks: 75

- N. B.: (1) All questions are compulsory.
 - (2) Make <u>suitable assumptions</u> wherever necessary and <u>state the assumptions</u> made.
 - (3) Answers to the **same question** must be **written together**.
 - (4) Numbers to the right indicate marks.
 - (5) Draw neat labeled diagrams wherever necessary.
 - (6) Use of Non-programmable calculators is allowed.

1. Attempt <u>any three</u> of the following:

15

Show that $\begin{vmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{vmatrix}$ is an orthogonal matrix.

b. For different values of k, discuss the following equations:

$$x + 2y - z = 0$$
; $3x + (k + 7)y - 3z = 0$; $2x + 4y + (k - 3)z = 0$

c. Find the eigen values of the matrix

$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

- d. Express $\frac{-1}{2} + \frac{\sqrt{3}}{2}i$ in polar form.
- e. Prove that $(1 + i\sqrt{3})^8 + (1 i\sqrt{3})^8 = -2^8$
- f. Show that $\sec h^{-1}(\sin \theta) = \log \cot \left(\frac{\theta}{2}\right)$

2. Attempt any three of the following:

15

a. Solve:
$$(D^2 - 4D + 1)y = \cos 2x + x$$

b. Solve
$$\sin 2x \frac{dy}{dx} = y + \tan x$$

- Solve: $\frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} \frac{dy}{dx} y = \cos 2x$
- d. Solve $p^2 py + x = 0$

e. Solve:
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 4 y = \sin(\log x^2)$$

f. Solve:
$$\frac{du}{dx} + v = \sin x$$
; $\frac{dv}{dx} + u = \cos x$. given at $x = 0$, $u = 1$ and $v = 0$

[TURN OVER]

Q. P. Code: 20944

15

15

15

3. Attempt *any three* of the following:

- a. Find the Laplace Transformation of $f(t) = t^3 e^{2t}$
- b. $L[f(t)] = \frac{8 + 12 s 2 s^2}{(s^2 + 4)^2}$ then find L[f(2t)]
- c. Find L[y(t)] of the following differential equation:

$$\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + y = te^{-t} ; y(0) = 1 \text{ and } y'(0) = 2$$

- d. Find the inverse Laplace transform of : $\frac{5s+3}{(s+1)(s^2+2s+5)}$
- e. Find the Laplace transform of : $f(t) = \begin{cases} 1 & 0 < t < a \\ -1 & a < t < 2a \end{cases}$ and f(t) = f(t+2a)
- f. Solve the following differential equation by using Laplace transform method:

$$\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + 5 y = e^{-t} \sin t. \text{ Given } y(0) = 0, y'(0) = 1$$

4. Attempt any three of the following:

- a. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx \, dy}{\sqrt{(1-x^2)(1-y^2)}}$
- b. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x \, dx \, dy}{\sqrt{x^2+y^2}}$ by changing polar co-ordinates.
- C. Evaluate $\iint_{\mathbb{R}} r^4 \cos^3 \theta \ dr \ d\theta$ where R is the region of curve $r = 2a \cos \theta$
- d. Evaluate $\iiint \frac{dx \ dy \ dz}{\sqrt{1-x^2-y^2-z^2}}$ taken throughout the volume of the sphere $x^2+y^2+z^2=1$ in the positive octant.
- e. Evaluate $\iint y \ dx \ dy$ over the area bounded by $y = x^2$, x + y = 2
- f. Find the volume bounded by the cylinder $y^2 = x$ and $x^2 = y^2$ and the planes z = 0 and x + y + z = 1

Attempt <u>any three</u> of the following:

- a. Evaluate $\int_{0}^{1/2} x^3 \sqrt{1 4x^2} dx$
- b. Evaluate $\int_{0}^{\pi} \frac{\sin^{-4} \theta}{(1 + \cos \theta)^{2}} d\theta$
- Show that: $\int_{a}^{a} \frac{x^{a} x^{b}}{\log x} \log \left(\frac{a+1}{b+1} \right) \text{ using DUIS.}$

[TURN OVER]

Q. P. Code: 20944

- d. If $y = \int_0^x f(t) \sin \left[a(x-t)\right]$. dt then show that, $\frac{d^2y}{dx^2} + a^2y = af(x)$
- e. Find $\frac{d}{dx} \left[erf(x) + erf_c(ax) \right]$
- f. Define error function and prove that error function is an odd function.
