Note

- All questions are Compulsory
- Right indicates the full marks

Q.1 Attempt Any Three of the following

- a) Find the Rank of the following Matrix by normal form $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{bmatrix}$
- b) Test the consistency of the given system of equation

$$2x + 6y + 11 = 0,6x + 20y - 6z + 3 = 0,6y - 18z + 1 = 0.$$

- $(\cos 5\theta + i\sin 5\theta)^3(\cos 2\theta + i\sin 2\theta)^7$ c) Simplify $(\cos 3\theta - i\sin 3\theta)^5$
- d) Verify the given Characteristic equation $A^3 5A^2 + 9A I = 0$ if $A = \begin{bmatrix} 2 & -2 \\ -1 & 3 & 0 \\ 2 & 1 \end{bmatrix}$
- e) Examine whether the following vectors are linearly dependent or linearly independent

$$X_1 = [1,1,-1]$$
 $X_2 = [2,3,-5]$ $X_3 = [2,-1,4]$

- f) i) If $x + iy = \frac{1}{a+ib}$ then prove that $(x^2 + y^2)(a^2 + b^2) = 1$.
 - ii) Write the following complex number in polar and exponential form if $z=\sqrt{3}^{-}+i^{-}$.

Q.2 Attempt Any Three of the following

(15)

- a) Solve $\frac{dy}{dx} = \frac{4x 3y + 1}{3x + 4y + 7}$
- b) Solve $3e^{x} \tan y \, dx = (1 e^{x}) \sec^{2} y \, dy = 0$
- c) Solve $(x + y) \frac{dy}{dx} + (x y) = 0$ by substitution method.
- d) Evaluate general solution of linear differential equation $\frac{dy}{dx} + ycotx = sin2x$.
- e) Evaluate complete solution of given differential equation if $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{7x} + 8$
- f) Solve the exact differential equation $(x^2 xtan^2y + sec^2y)dy = (tany 2xy y)dx$.

Q.3 Attempt Any Three of the following

(15)

- a) Find the value of given laplace $\int_0^\infty e^{-4t} t^2 \cos 5t \ dt$
- b) Find $L^{-1}\left[\frac{1}{s^2-s-12}\right]$ by Convolution theorem
- c) Find the Laplace transform of $L\left[t^2e^{-4t}cosh2t\right]$
- d) Using Laplace Transformation for the equation $\frac{dy}{dx} + 4y = 1 + e^{2t}$

- e) Find the inverse Laplace transformation of $\frac{1}{(s^2+1)(s+4)}$
- f) Find the laplace transform for following periodic function for period 2a

$$f(t) = \begin{cases} 4, & 0 \le t < 0 \\ -4, & a < t \le 2a \end{cases}$$

Q.4) Attempt Any Three of the following

(15)

- a) Solve $\int_0^5 \int_0^x x^2 y^2 dx dy$.
- b) Solve $\int_0^\pi \int_0^{a(1+cos\theta)} r dr d\theta$
- c) Change the order of integration and evaluate $\int_0^2 \int_{2-\sqrt{4-y^2}}^{2+\sqrt{4+y^2}} dx dy$
- d)Evaluate $\iint xydxdy$ over the area bounded by parobolas $y = x^2$, $x = y^2$
- e) Solve $\int_0^3 \int_0^x \int_0^y x^2 yz dx dy dz$
- f) Evaluate $\iiint x^2yzdxdydz$ throughout the volume bounded by plane

$$x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Q.5 Attempt Any Three of following

(15)

- a) Solve $\int_0^1 (x \log x)^5 dx$
- b) Solve $\int_0^\infty x^2 \cdot e^{-x^4} dx$
- c) Solve $\int_0^1 x^6 (1-x)^{1/2} dx$
- d) Prove that $erf(x) + erf_c(x) = 1$
- e) Prove that $\int_0^1 \frac{x^a 1}{\log x} dx = \log (1 + a)$
- f) Evaluate $\int_0^\infty \frac{dx}{(1+x^2)^{9/2}}$