Note

- * All questions are compulsory
- * All questions carry equal marks
- * Scientific Calculator is allowed

Q.1) Attempt ANY THREE of the following.

(15)

- a) Suppose 1.414 is used as an approximation to $\sqrt{2}$. Find the absolute and relative errors.
- b) Write short note on Conservation law of engineering problem.
- c) Find the Truncation error in the expansion of $f(x) = e^{2x}$ evaluate first six terms in the series for x = 3.5
- d) Explain blunders, formulation errors and data uncertainty.
- e) Let $f(x) = x^3 x^2 + x + 5$ at x = 2.45 using 3-digit arithmetic and determine the absolute & relative error using i) Rounding ii) Chopping.
 - f) Define -1) Significant digit 2) Error 3) Total numerical error 4) Round -off error
 - 5) Error propagation.

Q.2) Attempt ANY THREE of the following.

(15)

- a) Using Secant Method, find the root of $f(x) = cosx xe^x = 0$ taking the initial approximations as 0 and 1.
- b) Find the smallest positive root of $f(x) = x^3 5x + 1 = 0$ by performing five iterations of Bisection Method.
- c) Perform five iterations of Newton Raphson method to obtain the approximate value of equation, $x = 17^{\frac{1}{3}}$ starting with the initial approximation $x_0 = 2$.
- d) For $f(x) = x e^{-x} = 0$ determine the initial approximation to find the smallest positive root. Find the root correct to four decimal places using Regula False method up to four iterations.
- e) Construct the divided difference table using Newton's Interpolation for the given data and hence find the interpolating polynomial.

X	0.5	1	1.5	2	2.5
F(x)	12	5	6	1	3

f) Solve by Lagrange's interpolation with the help of given data if f(1) = 3, f(3) = 5, f(5) = 9, f(7) = 2 then find f(4).

Q.3) Attempt ANY THREE of the following.

(15)

- a) Solve the system 6x + y + z = 20, x + 4y z = 6, x y + 5z = 7 by using Gauss-Jordan Method.
- b) Solve the system 5x + 3y + 9z = 2, 7x + 2y + Z = 3, x + 8y + z = 3 by using Gauss Seidel Method.
- c) From the data table given below obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1 by Newton divided differentiation

X	1	1.2	1.4	1.6	1.8
У	2.7183	3.3201	4.0552	4.9530	6.0496

- d) Solve by Trapezoidal rule if $\int_{1}^{2} x^{2} dx$ dividing into six parts.
- e) Solve by Simpson's $1/3^{rd}$ rule if $\int_0^1 \frac{1}{x^3+1} dx$ with h=0.2
- f) Evaluate f'(2), f''(2) by Lagrange's interpolation differentiation with the help of given data

X	1	2	3	4
y	2	3	1	5

Q.4) Attempt ANY THREE of the following

215)

- a) Solve by Simple Euler method if $\frac{dy}{dx} = x + 5y$, y(0) = 1, find y at x = 0.2 where h = 0.2
- b) Solve by Runge-Kutta forth order if $\frac{dy}{dx} = x^2 + 5y$, y(0) = 1, find y at x = 0.5 where h =0.5
- c) Solve by Taylor's method up to fifth order derivative if $\frac{dy}{dx} = x^3 + 2x^2y + 1$

y(1) = 1, find y at x = 2 where h = 1.

d) Fit the equation of Straight line by Least Square method with the help of given data

X	1	2	3	4	5	6	7	8	9	10
У	0.2	0.4	0.5	0.6	0.8	1.2	1.4	1.6	1.8	2.1

e) Fit the equation of 2nd degree of polynomial by least square method with the help of given data

X	1	2	3	4	5	6	7	8	9
у	2	4	6	8	10	11	12	13	14

f) Evaluate equation X on Y and Y on X, \bar{x} , \bar{y} , b_{xy} , b_{yx} if 9x + 3y = 16, 5x + 8y = 11.

Q.5) Attempt ANY THREE of the following

(15)

a) Maximize Z=6x+3y ... subject to constraints, $2x + 3y \le 13$, $x + y \le 5$ $x \ge 0$, $y \ge 0$.

Indicate the feasible region on graph and maximize the function Z = 6x+3y.

- b) Give a mathematical formulation of the following L.P.P. The standard weight of a special purpose brick is 5 kg and it contains ingredients B_1 and B_2 . B_1 costs Rs 5 per kg. and B_2 costs Rs 8 kg. Strength considerations dictate that the brick contains not more than 4 kg of B_1 and least 2 kg of B_2 Determine the amount of ingredients B_1 and B_2 so that the cost of the brick way be minimum Solve the problem graphically.
- c) Find the solution of parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ given u(0,t) = 0, u(4,t) = 0 u(x,0) = x (4-x). Assume h = 1 Find the values of u up to t = 5.
- d) Using Crank -Nicholson Method, Solve the equation $u_{xx}=14u_t$, subject to u(x,0)=0, u(0,t)=0 and u(1,t)=200t-1. Compute t for one time step taking h=1/4.
- e) Classify the following equations in elliptic, parabolic and hyperbolic.

i)
$$(1+x^2)u_{xx} - (5+2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4+x^2)\frac{\partial^2 u}{\partial t^2} = 0$$

ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0$$
 , $-\infty < x < \infty, -\infty < y < \infty$

iii)
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 7 \frac{\partial^2 u}{\partial y^2} - 2 \frac{\partial u}{\partial x} + 6 \frac{\partial u}{\partial y} - u = 0$$

VCD SEM II FYIT NUMERICAL METHOD 75 MARKS 2 ½ HRS

f) Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in figure by gauss Seidel iteration.

