NOTE

- * ALL questions are compulsory
- * Right Indicates full Warks.

Q.1) Attempt (Any Three) of the following

(15)

a) Evaluate Transitive Closure cells with the help of Warshall's Algorithm if

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- b) Prove by Mathematical Induction $1^3 + 2^3 + 3^3 \pm - \mp n^3 = \frac{n^2(n+1)^2 + 4}{4}$
- c) Find number of integers between 1 and 2100 that are divisible by 2 ,3 and 7 .
- d) Evaluate $M_R, M_S R \cup S$, $R \cap S$, $(R \cup S)^c$, $(R \cap S)^c$, R^c , S^c , R^{-1} , S^{-1} , Indegree of R and S , Outdegree of R and S , RoR , SoS , SoR , RoS , Digraph of R and S if

e) Define -1) Poset 2) Partially ordered Relation , Draw the Hasse's Digraph With the help of matrix

Here A = {1,2,3,4,5}
$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- f) Check whether the given equation is an equivalence relation if $a \equiv b \pmod{m}$, if m divides a-b
- Q.2) Attempt (Any Three) of the following

(15)

- a) Let $f: R \to R$ Be defined by f(x) = 7x 5 prove that it is a bijective function also evaluate the formula for inverse function .
- b) Let f ,g and h are the function from R to R defined as $f(x) = 2x^3 7$, $g(x) = 4x^2$, h(x) = 5x + 4 Find a) ((gof)oh)(1) b) ((fof)og)(2) c) (hog)og)(1) d) (hoh)oh (-2) e) (hof)og)(-2)
- c) Define 1) Logarithmic function 2) Exponential function 3) Ceiling function 4) Flooring function
 - 5) Chebyshev's Inequality .
- d) Two cards are drawn from a pack of cards Find the probability that 1) Both are hearts
 - 2) One is heart and the other is a spade .
- e) Find Mean and Variance for the following probability distribution

X	0	1	2	3
P	0.3	0.4	0.2	0.1

f) For the following probability distribution .

			2	4	5	6
	1	1	3	140	2/10	1/10
P(x)	2/10	3/10	1/10	1/10	2/10	1/10

Find i) P(x > 4) ii) $P(X \le 3)$ iii) p(2 < x < 5)

Q.3) Attempt (Any Three) of the following

(15)

- a) From 4 professor and 8 students a committee of 3 is to be formed .In how many ways this can be done if the committee contains
 - 1) Exactly one professor 2) at most one professor 3) at least 2 professor
- b) Find the number of distinct permutation of the letters of the word QUALIFICATION .
- c) 20 Different books are to be arranged on a shelf. Find the number of ways in which this can be done if two specified books are 1) Always together 2) Never together
- d) i)State and prove Pigeonhole Principle ii) There are 38 different time periods during which classes at a university can be scheduled if there are 677 diffferent classes ,how many different rooms will be needed .
- e) Solve -1) How many solutions does the equation x+y+z=14 have where x, y, z are nonnegative integers ,2) In how many ways can 15 balloons be distributed at a Birthday party among 10 children .
- f) Evaluate first seven term of R.R. if $a_n = 6a_{n-1} + 5a_{n-2}$ with $a_0 = 1$, $a_1 = 3$.

Q. 4 Attempt (Any Three) of the following

- 15 marks

a) Define the bipartite graph and check whether following graphs are bipartite graphs

b) Apply Dijkstra's algorithm to the graph given below and find the shortest path from a to f .

c) For the given graph find- a) Adjacency matrix b) Adjacency List c) Verify handshaking theorem

d) Determine whether, the given graph is Eulerian, Semi-Eulerian or Neither Justify

e) Define the Hamiltonian graph ,path ,circuit Check whether the following graph is

f) Explain the following terms, a) Breath first search b) Alpha-Beta pruning

Q.5 Attempt any 3

- 15 marks

a) From the given tree identify following Right subtree ,Parent ,left child ,Height of tree ,

b) By Huffman's coding compression technique find the Huffman's tree

for CCAABBBEDDCCAEBDDDCC

SEM I CLDS

c) Draw the unique binary tree for given in order and post order traversal.

In order: 4 6 10 12 8 2 1 5 7 11 13 7 3

Post Order: 12 10 8 6 4 2 13 11 9 7 5 3 1

d) Find the minimal spanning tree of the given weighted tree using Prim's Algorithm.

e) Define- i) Poset and Lattice ii) Draw the Hasse diagram of the poset (S₁₀d).

f) Define the following terms – 1) Upper Bound 2) Lower Bound 3) Least upper bound 4) Greatest lower bound 5) Minimal and maximal element