YCD -08-1020MPP.MATHSI- PULT - SenT-60-2Hor.

Note- All questions are compulsory

Right indicate full marks

Q.1) Solve the following (any two)

(10)

a) Find the A⁻¹ by inversion method if matrix A=
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 0 \\ 1 & 4 & 1 \end{bmatrix}$$

c) Check given system is consistent or in-consistent and find the values of unknowns

$$x_1 + x_2 - x_3 + x_4 = 0$$
, $x_1 - x_2 + 2x_3 - x_4 = 0$, $3x_1 + x_2 + x_4 = 0$

- d) Determine the value of p for which the following matrix A will have
 - (i) rank 1, (ii) rank 2, (iii) rank 3.

$$A = \begin{pmatrix} p & p & 2 \\ 2 & p & p \\ p & 2 & p \end{pmatrix}$$

Q.2) Solve the following (any two)

(10)

a) Find the eigen value and eigen vector of following matrix

$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$
b) If $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ find (i) A^{T} (ii) $A^{2} - 2A + 1$ (iii) adj A . (iv) A^{3}

c) Prove that the given matrix is orthogonal and also find A-1

If
$$A = \frac{1}{11} \begin{pmatrix} 2 & 6 & -9 \\ 6 & 7 & 6 \\ 9 & -6 & -2 \end{pmatrix}$$

d) Show that given matrix are derogatory and find it's minimal polynomial

If matrix is
$$\begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix}$$

a) Solve
$$\frac{dy}{dx} = \frac{2x - 5y + 3}{2x + 4y - 6}$$

- b) Solve $y/x \cos y/x dx (x/y \sin y/x + \cos y/x) dy = 0$
- c) Check it is exact or non-exact , if it is non-exact apply formula &find general solution if (2xlog x-xy)dy +y dx =0
- d)Determine orthogonal trajectories of all parabolas having vertices at (0,0) &foci on x-axis.
- Q. 4) Solve the following (any two)

(10)

- a)State &prove Bernoulli's differential equation
- b) Solve $x \frac{dy}{dx} + y \log y = xye^x$.
- c) Solve the linear differential equation $x\cos x \frac{dy}{dx} + y(x\sin x + \cos x) = 1$.
- d)Solve $(D^3-2D^2-5D+6)y=0$, y(0)=0, y'(0)=0, y''(0)=1
- Q.5) Solve the following (any two)

(10)

- a) If $A = 2yz\overline{i} x^2y\overline{j} + xz^2\overline{k}$, $B = x^2\overline{i} + yz\overline{j} xy\overline{k}$ and $\emptyset = 2x^2yz^3$, find (i) $A \cdot \nabla \emptyset$, (ii) $(A \times \nabla) \emptyset$, (iii) $A \times \nabla \emptyset$
- b) Prove that $A=(z^2+2xy+3y)i+(3x+2y+z)j+(y+2zx)k$ is irrotational and find scalar potential \emptyset such that $A=\nabla\emptyset$ and \emptyset (1,1,0)=4.
- c) Find the acute angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 z$ at the point (2.-1,2).
- d) Prove that the four points whose position vectors are 3i-2j+4k,6i+3j+k,5i+7j+3k,2i+2j+6k are coplaner.
- Q.6) Solve the following (any two)

(10)

- a) If $u = \log (x^2 + y^2 + z^2)$, prove that $z \frac{\partial z u}{\partial x dy} = y \frac{\partial z u}{\partial z \partial x} = x \frac{\partial z u}{\partial y \partial z}$.
- b) State &prove Langranges Mean Valued Theorem.

c) If
$$u = \frac{x^2 + y^2 + z^2}{x + y + z}$$
 Verify Euler Theroem.

d) Find the nth order derivative of $y = x^2/2x^2 + 7x + 6$.