3) By using the table given below find polynomial regression equation of order 2

X	3	4	5	6	7
Y	2.5	3.2	3.8	6.5	11.5

4) Fit a line through following set of points

X	1	2	4	8	6	5	8	9	7
У	2	3 -	4	7	6	5	8	8	6

- 5) Use trapezoidal rule and Simpson's 1/3 rd rule to evaluate $\int_{1}^{2} (x^3 + 1) dx$ with h = 1
- 6) Compute $\int_0^6 \frac{1}{y} dx$ from the following data using Simpson's three-eight's rule

X	0	1	2	3	4	5	6
У	0.146	0.161	0.176	0.190	0.204	0.217	0.230

Q.4) Attempt any THREE questions from the following.

(15)

- 1) Using 2^{nd} order Runge-Kutta method, Solve $\frac{dy}{dx} = 1 + y^2$ with y(0) = 0 for x = 0.2by taking h = 0.2
- 2) Use Euler's method to solve $\frac{dy}{dx} = 1 + y^2$, with y(0) = 0. Find y(0.1), y(0.2), y(0.3) 3) Apply Runge-kutta 4th order method to find approximate value of y at x = 0.2, given
- that $\frac{dy}{dx} = x + y^2$ with y(0) = 1.
- 4) Use Euler's modified method to solve $\frac{dy}{dx} = \frac{2y}{x}$ with y (1) = 2. Find y (2) with step size h=0.25
- 5) Given equation $\frac{dy}{dx} = 2y/x$ with y(1) = 2. Estimate y(2) using Adams-Bashforth Moulton method, with y(1.25) = 3.13, y(1.5) = 4.50, y(1.75) = 6.13
- 6) using Milne-Simpson's predictor-corrector method find y at x=0.8, Given equation $\frac{dy}{dx} = x - y^2$ with y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762

Q.5) Attempt any THREE questions from the following.

(15)

- 1) Find QR decomposition of a matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}$
- 2) Using Householder's tridiagonalization method reduce the following matrix into tridiagonal form $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$
- 3) Find largest eigen value of a matrix and corresponding eigen vector of a matrix using Power method where $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- 4) Using shooting Method, Solve $\frac{d^2y}{dx^2} = 2y + 8x(9-x)$ with y(0)=0, y(9)=0. Find y(3) and y(6).
- 5) Use Inverse Power method to compute smallest eigen value of A with initial vector $(1,1,)^T$ where $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$
- 6) Using finite difference method, Solve y'' y = x, with boundary condition y(0) = y(1) = 0, taking h = 0.25.

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective questions.

Q.1) Attempt any THREE questions from the following.

(15

- 1) Use Secant method to estimate the root of the equation $x^2 4x 10 = 0$ with initial estimates of $x_1 = 4$ and $x_2 = 2$
- 2) Using Newton Raphson method, find estimate root of $x^3 4x 9 = 0$ by taking initial root as 2.
- 3) Estimate the square root of 5 using the equation $x^2 5 = 0$ by applying Fixed point iteration method.
- 4) Using Regular falsi method, find the approximate root of $x^3 x 1 = 0$. Carry out only 3 iterations
- 5) Using Bisection method, Find the approximate root of equation $x^2 + x 2 = 0$. Perform at-least 5 iterations
- 6) Write a short note on Absolute error, Relative error and Percentage error.

Q.2) Attempt any THREE questions from the following.

(15)

1) Use Gauss Elimination method to show that the following system has unique solution.

$$x-2y+6z = 4$$

 $2x + y - 3z = 8$
 $3x - y + 5z = 15$

- 2) Define linear system of equations and explain algorithm to solve linear system of equation using Jacobi's iteration method.
- 3) Use Gauss seidel method to find the solution of

$$2x + 5y = 16$$
$$3x + y = 11$$

- 4) Find LU Decomposition for the matrix A = $\begin{bmatrix} 3 & -12 & 6 \\ 0 & 2 & 0 \\ 6 & -28 & 13 \end{bmatrix}$
- 5) Use Gauss Jordan method to solve,

$$2x + 3y - 4z = 5$$

 $3x + 4y - 5z = -6$
 $4x + 5y - 6z = 7$

6) Use LU decomposition method to solve the system of equations,

$$-3x1 - 6x2 = 0$$

$$-2x1 + 5x2 = 1$$

Q.3) Attempt any THREE questions from the following.

(15)

1) Use following table and find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.1 by using Newton's forward formula

X	1.5	2	2.5	3	3.5	4	No.
Y	3.375	7	13.625	24	38.875	59	

2) Use Newton's Backward formula to find f (1.5) from the following table

X	0	0.5	1	1.5	2
у	0.3989	0.3521	0.2420	0.1295	0.0540