- 1. All questions are compulsory.
- 2. All questions carry equal marks.
- 3. Draw neat, labeled diagrams wherever necessary.

1. Attempt the following (Any three)

(15 M)

- a. Find $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ of the functions $f(x) = x^2$, g(x) = x + 1
- b. Find the inverse of the function $f(x) = \frac{3-4x}{8x-1}$
- c. A quadratic function $f(x) = 2x^2 + 12x + 10$ is given. (i) Express f in standard form. (ii) Sketch a graph of f. (iii) Find the maximum or minimum value of f.
- d. Express the polynomial $f(x) = x^4 3x^3 + 2x^2$ into factor form and also find all its
- e. Find an equation of the circle that has the points P(1, 8) and Q(5, -6) as the endpoints of a diameter
- f. Solve: $(x-4)(x+2)^2 < 0$

2. Attempt the following (Any three)

(15 M)

- a. Solve: $\log_3(x+15) \log_3(x-1) = 2$
- b. A certain culture of the bacterium Rhodo-bactersphaeroides initially has 25 bacteria and is observed to double every 5 hours.(a) Find an exponential model for the number of bacteria in the culture after t hours. (b) Estimate the number of bacteria after 18 hours. (c) After how many hours will the bacteria count reach 1 million?
- c. Find the exact value of the following:
 - i) $cos \frac{19\pi}{6}$
- ii) $tan^{\frac{5\pi}{n}}$
- d. Find the values of all the trigonometric functions of t from $tant = \frac{1}{4}$, terminal point of t is in Quadrant III
- e. Find the value of the following: i) $\tan^{-1}(-\sqrt{3})$ ii) $\cos(\tan^{-1}\frac{4}{2})$
- Find the area of the triangle having sides of length 7 and 9 and included angle72°

3. Attempt the following (Any three)

(15 M)

- a. Verify the identity: $\frac{1+tan^2x}{1-tan^2x} = \frac{1}{cos^2x sin^2x}$ b. Prove the identity: $\frac{1-sinx}{1+sinx} = (secx tanx)^2$
- c. Find $tan2\theta$ if $cos\theta = \frac{3}{5}$ where θ is in quadrant I.
- d. Find the value of the following: i) cos75° e. Solve the equation: $2\sin^2\theta - 7\sin\theta + 3 = 0$
- f. Find all the solution of $2\sin 3\theta 1 = 0$

4. Attempt the following (Any three)

(15 M)

- a. Express complex number $2\sqrt{3} 2i$ into polar form
- b. Find the fifth root of Z = 1 + i

c. Solve the following system of equation by using Gaussian Elimination method

$$\begin{cases} x - 2y + z = 1\\ y + 2z = 5\\ x + y + 3z = 8 \end{cases}$$

d. Solve the following system of equation by using Cramer's rule

$$\begin{cases} 2x - 5y = 4\\ x + y - z = 8\\ 3x + 5z = 0 \end{cases}$$

- e. If u = 2i + j, v = 3i 2j find u. v and the angle between the vectors u and v
- f. If u = -j + 3k, v = 2i k, find a unit vector that is orthogonal to the plane containing the vectors u and v.

5. Attempt the following (Any three)

(15 M)

- a. Find the equation of the parabola that has its vertex at the origin and directrix x = -5. And sketch its graph.
- b. Find the vertices, foci, asymptotes, length of transverse axis of the hyperbola $25y^2 9x^2 = 225$ and sketch its graph.
- c. The 3rd term of a geometric sequence is 63/4 and the 6th term is 1701/32. Find the fifth term.
- d. Use Mathematical induction prove that $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all natural number 'n'
- e. Find the limit if it exist: i) $\lim_{x\to -2} \frac{4x^3+2x^2-1}{5-3x}$
- ii) $\lim_{x\to 0} \frac{|x|}{x}$
- f. Find the derivative of $f(x) = \sqrt{x}$ at x = a

XXXXX