QP Code: 03298

(2½ Hours)

[Total Marks: 75

N.B. (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- (3) Use of logarithm table / non-programmable calculator is allowed.

Physical Constants

$$\begin{array}{lll} N = 6.022 \times 10^{23} & m_e = 9.100 \times 10^{-31} \ kg \\ F = 96500 \ C & C = 12 \\ R = 8.314 \ J \ K^{-1} \ mol^{-1} & 0 = 16 \\ h = 6.626 \times 10^{-34} \ J \ s & 1 \ amu = 931 \ MeV \\ C = 3 \times 10^8 \ m \ s^{-1} & 1 \ amu = 1.66 \times 10^{-27} \ kg \\ \pi = 3.142 \end{array}$$

1. Attempt any three of the following:—

- (A) Define dipole moment. Explain the structure of $\mathrm{BF_3}$ and $\mathrm{NH_3}$ on basis of dipole moment. 5
- 5 (B) What is meant by Raman effect? What are stokes and anti stokes lines? How do they differ from Rayleigh line.
- (C) Show that the frequency of fundamental, first and second overtone bands are in the 5 ratio 1:2:3 for anharmonic oscillator.
- 5 (D) Obtain a relationship between moment of inertia and bond length of a diatomic molecule undergoing rotational motion.
- (E) Calculate the bond length of carbon monoxide molecule, if the rotational constant of the molecule is $1.90 \times 10^2 \,\mathrm{m}^{-1}$.
- (F) What is meant by zero point energy? Calculate the zero point energy of a molecule 5 whose vibrational frequency is 2×10^5 m⁻¹.

2. Attempt any three of the following:—

- 5 (A) Explain: (i) Wave Particle duality
 - (ii) Heisenberg's Uncertainity Principle.
- 5 (B) State Schrodinger wave equation for a particle in three dimensional motion. Identify the terms involved. Give the properties of wave function.
- (C) Explain the term commutative operators. Find whether the two operators \hat{A} and \hat{R} 5 commute or not, if $\hat{A} = 2x^2$ and $\hat{B} = \frac{4}{12}x$.
- (D) What is meant by eigen function and eigen value? Find eigen function and eigen 5

value for sin 4x when it is operated by $\frac{d^2}{dx^2}$.

- 5 (E) What is meant by electroplating? Explain the process and theory behind it. 5
- (F) Explain the Tafel's theory of hydrogen overvoltage.

[TURN OVER

5

2 QP Code: 03298

3.	Attempt any three of the following :—					
	(A) Describe the construction and working of hydrogen oxygen fuel cell.					
	(B) Answer the following :—					
	(i) Give the merits of fuel cell.	2				
	(ii) Explain why hydrogen is called the fuel of the future.	3				
	(C) Explain why ethanol gives three peaks in NMR spectra.	5				
	(D) Name the internal standard used for production of NMR spectra. Why is it used? What	5				
	are the peak positions of the internal standard?					
	(E) What are fast reactions? Describe the stop flow method to study the kinetics of stop	5				
-	flow method.					
	(F) State the important assumptions of collision theory. Give merits and limitations of this theory.	5				
4.	Attempt any three of the following :—					
	(A) Explain the term radioactive equilibrium. How does it differ from chemical equilibrium?	5				
	(B) Describe the construction and working of Gieger Muller counter.	5				
	(C) What is meant by tracers? Explain how they are used to study mechanism of hydrolysis of esters.					
	(D) Name the basic components of a nuclear reactor and explain them.	5				
	(E) Calculate the Q-Value and threshold energy of the nuclear reaction.					
	$^{27}_{13} \text{Al} + ^{4}_{2} \text{He} \rightarrow ^{30}_{14} \text{Si} + ^{1}_{1} \text{H}$					
	²⁷ Al = 26.982 amu, ⁴ He = 4.0030 amu					
	30 Si = 29.9847 amu, 1 H = 1.0078 amu					
	(F) 90 Sr decays to 90 X by β –emission. What will be the weight of 90 X in equilibrium with 1g	5				
	of 90 Sr. The half life of 90 Sr is 28 years and that of 90 X = 63 hour.					
5.	(A) Choose the correct answer :—	4				
	(a) The dipole moment of p-dichlorobenzene is					
	(i) Unity					
	(ii) Zero					
	(iii) greater than one					
	(b) Which of the following molecule is microwave active?					
	(i) H ₂					
	(ii) O ₂					
	(iii) HCl					
	(c) Number of vibrational modes in H ₂ O are					
	(i) 3					
	(ii) 4					
	(iii) 9					
	(d) can be classified as out of plane vibrations.					
	(i) Rocking					
	(ii) Scissoring					
	(iii) Wagging.					
	OR [TURN OVE	R				

3

5.

5.

QP Code: 03298

• •	False of the following :—	4				
,, ,	(p) The rotational lines on the higher frequency side constitute R-branch lines of					
	ional rotational spectra. eavier isotopic molecule has smaller value of the rotational constant B as					
, .,	ared to lighter isolopic molecule.					
•	moment is scalar quantity.					
(s) According to Rule of Mutual exclusion, IR active molecule are Raman active to						
(B) Choose the co	orrect answer :—	4				
(a) Â.C	$f(x) = C.\hat{A} f(x)$, where C is a constant is operator.					
	(i) Linear					
	ii) Sound					
(i	ii) Stationary					
(b) The w	aves associated with motion of electron are waves.					
	(i) Progressive					
	ii) Sound					
·	ii) stationary					
	the operator d/dx operators on wave function $\psi = 8e^{4x}$, the eigen value is					
	(i) 8					
	ii) 4					
-	ii) 4x vervoltage is given by the relation, where E _d is decomposition					
	tial and E_r is reversible potential.					
	(i) $\eta = E_d + E_r$					
	ii) $\eta = E_d - E_c$					
	ii) $\eta = E_d \times E_r$ OR					
(B) State True or	False of the following :—	4				
	assical mechanics could not explain the phenomenon of black body radiation.	·				
	tors exist in classical mechanics.					
(r) Decor	nposition potential depends on the temperature at which electrolysis is carried					
out.						
` '	aneous deposition of two metals from the same solution is possible if their					
depos	ition potentials are same.					
(C) Choose the co	orrect answer :—	4				
(a) The reversible potential of lithum ion cell is						
	(i) greater than 3.0V					
(ii) less than 3.0V					
(i	ii) 2.0V					
	T THEN OVER	,				

4

QP Code: 03298

	(b)		ells, the electrode reactions are			
		` '	reversible			
		• •	irreversible			
		, ,	at equilibrium			
	(c)	The spin	of ${}^{13}_{6}$ C is			
		(i)	half integral			
		(ii)	integral			
			zero			
	(d)	The ener	gy of the activated complex formed as an intermediate in a chemical reaction			
			gy products.			
		• •	greater than			
		• •	less than			
		(iii)	equal to			
			OR			
	• •		llse of the following :—	4		
	(p)		ng to activated complex theory, the rate of reaction is given by rate of			
	, ,	•	osition of activated complex into the products.			
			s are galvanic cells.			
	(r) The most widely used solvent in NMR spectra is CDCl ₃ .					
	(s) The relaxation process is the one in which proton in lower energy state goes to a					
		nigner ei	nergy state.			
_	(D) Chaos	o the corr	oct answer:	3		
Э.						
(a) One Curie is disintegrations per second. (i) 3.7×10^{10}						
		(ii)	3.7×10^7			
		(iii)	10 ⁶			
	(b)		projectile that can be used in nuclear transmutation reactions is			
	(~)		proton			
			neutron			
			deutron			
	(c)		on capture is characteristic of			
			natural radioactivity			
		(ii)	artificial radioactivity			
		(iii)	nuclear transmutation.			
			OR			
	(D) State	True or Fa	lse of the following :—	3		
	(p)	Fission o	f ²³⁵ U is brought about by fast neutrons.			
	(q)	²³² Th is f	ertile material.			
	(r)	During e	xoergic nuclear reaction, energy is evolved.			
			Market Company			