| | ne: 3 Hours) | Total marks: 100 | | |--------------|---|---|--------| | N.B. | (1) All Questions are compulsory. | | | | (| (2) Figures to the right indicate full marks. | | | | (| (3) Use of logarithmic table/non-programmable calculator is | allowed. | 77 | | Q.1. | Answer Any Four of the following:- | | 30 | | A. | Give any five limitations of valence bond theory as applied | to metal-ligand bonding. | 5 | | B. | Explain the splitting of d orbitals of the central metal atom crystal fields. | in square planar | 5 | | C. | How does crystal field splitting affect hydration energy & e in transition metal complexes? | enthalpy of formation | 5 | | D. | Write a note on Jahn-Teller distortions with reference to Z-complex with octahedral geometry. | in situation in a | 5 | | E. | What is Crystal Field Stabilization Energy (CFSE)? Calcu configurations in weak field octahedral complexes. | late CFSE for d ³ & d ⁴ | 5 | | F. | Explain how Electron Spin Resonance (ESR) spectra help a covalence in metal complexes. | as an evidence for | 5 | | Q.2. | Answer Any Four of the following:- | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | A. | Draw a neat labeled molecular orbital diagram for Hexaflu | oro ferrate (III) ion; $[FeF_6]^{3-}$. | 5 | | B. | Discuss the terms thermodynamic stability & kinetic stabil | | 5 | | C. | What is the role of 'size & charge of the central metal ion' of the complexes. | on the stability | 5 | | D. | Write a note on the Dissociative mechanism for Ligand Sul | ostitution Reactions. | 5 | | E. | Explain 'Anation Reactions' with respect to metal complex | | 5 | | F. | Discuss 'Intra ligand electronic transitions' in coordination | | 5 | | Q.3 A | Answer any four of the following: | | | | | iscuss the following two methods of synthesis of organometal lements. | lic compounds of main group | 5 | | 5000
1999 | (a) Metal-metal exchange reaction(b) oxidative-addition reaction | | | | 0'01.7 | xplain the following chemical reactions of organometallic conements. | npounds of main group | 5 | | NY CO | (a) reactions with protic reagents.(b) reactions with oxygen and halogens. | | | | C. (a) |) Mention the requirements of metal to be a good catalyst. | | 3 | | (b | b) Write note on σ bonded covalent organometallic compound | S. | 2
5 | | D. De | escribe the methods of preparation of ferrocene. | | 5 | | E. Ex | xplain: sulphonation and alkylation reactions of ferrocene. | | 5 | | F. Ex | xplain the mechanism involved in hydrogenation of alkene usi | ng Wilkinson's catalyst. | 5 | 66159 Page 1 of 3 ## Paper / Subject Code: 88621 / Chemistry: Inorganic Chemistry (6 Units) | Q.4 | Answer any four of the following: | 2000 | | |----------|---|------|--| | A. D | Define metallurgy. Write a brief note on the hydrometallurgy. | 5 | | | B. E | B. Explain the following terms by giving examples. | | | | | (a) mineral (b) gangue | 200 | | | C. (a | a) Give an account of the various reactions that takes place in the following process with | 720 | | | | respect to extraction of copper by pyrometallurgy (any one) | 3 | | | | (i) roasting (ii) smelting | £ 40 | | | (ł | b) Discuss the Gravity separation method used for concentrating ores. | 2 | | | D. E | D. Explain: (a) Neon is used in safety devices. | | | | | (b) Helium and neon do not form clathrate compounds. | 2 | | | E. G | live the preparation of the xenon hexafluoride and discuss their structure. | 55 | | | F. D | iscuss the role of sodium and potassium ions in biological systems. | 5 | | | Q.5 | A.State whether following statements are true or false:- (Any Five) | 5 | | | | (a) Crystal field theory takes into account overlapping of metal and ligand orbitals. (b) Weak field ligands form high spin complexes. (c) 10 Dq value in tetrahedral complexes is higher than in square planar complexes. (d) CO is a strong field ligand. (e) ESR spectrum of [IrCl₆]²⁻ is a straight line. (f) In octahedral complexes metal d orbitals are split into two levels. (g) In tetrahedral complexes none of the ligands directly approach metal d orbitals. (h) [Fe(CN)₆]³⁻ is a high spin complex. | | | | B. | Fill in the blanks with appropriate words given in the bracket:- (Any Five) (SN ¹ CB, 50, more, diamagnetic, dissociation constant, 45, allowed, decreases, less, paramagnetic, association constant, SN ² , forbidden, increases) | 5 | | | | (a) On the basis of magnetic behavior, $[Fe(CN)_6]^{3-}$ is | | | | | (b) Reverse of stability constant is | | | | <u> </u> | (c) Complexes with chelate groups arestable than those with unidentate ligands. | | | | D 98 | (d) Base hydrolysis reaction with proton abstraction is supposed to take place bymechanism. | | | | | (e) Transitions which involve a change in the azimuthal quantum number | | | | 6 6 ° | are Laporte (f) Number of microstates in d ² configuration is | | | | 77.750 | (g) Stability of complexes with π bonding capacity of the ligands. | | | | 0 N | | | | 66159 Page 2 of 3 ## Paper / Subject Code: 88621 / Chemistry: Inorganic Chemistry (6 Units) | (C) Select and write the appropriate answers: | | | | |---|---|--|--| | (Attempt any five) | | 322 2 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 6 5 6 5 | | | (a) In metathesis, organometalli | c compound when treated wi | ith a binary halide, exchange of a | | | formal Carbanion R ⁻ with a | takes place. | | | | (i) halide ion | (ii) carbon | (iii) metal | | | (b) The metal hydrogen exchan | ge reactions are called as | reactions. | | | (i) metallation | (ii) transmetallation | (iii) methylene insertion | | | (c) metal or nonmetal halides w | hen treated withu | nder suitable conditions, methylene | | | insertion takes place in M-C | l bond. | | | | (i) diazomethane | (ii) alkyl group | (iii) none of the above | | | (d) During nitration ferrocene u | ndergoes | | | | (i) reduction | (ii) substitution | (iii) oxidation | | | (e) Condensation of ferrocene r | ings with formaldehyde and | amine is calledreaction. | | | (i) hydrolysis | (ii) alkylation | (iii) Mannich | | | (f) Ferrocene obeys rule. | | 99, 4, 4, 4, 5, 9, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | | | (i) Pauli's | (ii) Hund's | (iii) 18 electron | | | (g) When the reactants and cata | lyst are in the same phase, ca | ntalysis is referred as | | | (i) hetrogeneous | (ii) substitution | (iii) homogeneous | | | (h) A catalyst influences the rat | e of a Chemical reaction but | it normally the equilibrium of | | | the reaction. | | | | | (i) alters | (ii) affects on | (iii) does not alter | | | (D) State whether the following | statements are true or false | | | | (Attempt any five) | | M. C. | | | (a) Copper matte contains sulph | nides of copper and iron. | | | | (b) Highly pure Si can be obtain | ned by Zone refining method | 4.75 S. C. | | | (c) The gas evolved during roas | ting of sulphides ore is H ₂ S. | Sept And Control of the t | | | (d) XeOF ₄ has a square pyramic | l structure. | 4000
4000 | | | (e) Steric number of XeO ₂ F ₂ is | 4. 6 3 8 5 5 5 5 5 5 5 | | | | (f) The transition element prese | nt in hemoglobin is iron. | | | | (g) To maintain high concentrate | ion of K ⁺ ion inside the cell a | and high concentration of Na ⁺ | | | outside the cell in the blood | plasma an ion pump is devel | loped across the cell membrane. | | | \$2000 KN 8 4 5 5 6 4 6 6 | | | | | | | | | | | CA TO SOLVE TO DE | | | 66159 Page 3 of 3