(2½ Hours)

[Total Marks: 75

- N.B. (1) All questions are compulsory.
 - (2) **Figures** to the **right** indicate **full** marks.
 - (3) Use of **logarithm table / non-programmable** calculator is **allowed**.

Physical Constants	$\pi = 3.142$
$N = 6.022 \times 10^{23}$	$\frac{2.303RT}{2}$ = 0.0592 at 298 K
F = 96500 C	F = 0.0392 at 290 K
$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$	$m_e = 9.0109 \times 10^{-31} \text{ kg}$
$h = 6.626 \times 10^{-34} \text{ J s}$	O = 16
$c = 3 \times 10^8 \text{ ms}^{-1}$	H = 1
$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$	Na = 23
	CI = 35.5

- Attempt any **three** of the following:—
 - (A) Explain the Lindemann's theory of unimolecular reaction.

5

5

- (B) In one dm 3 flask, 1.88×10^{19} molecules of O_2 per cubic meter are mixed with 3.0×10^{19} molecules of H_2 per cubic meter at 300K. The average molecular diameter of $\rm O_2$ and $\rm H_2$ gases is $\rm 2.9 \times 10^{-10} m$. Calculate the number of collisions in $cm^{-3} s^{-1}$.
- (C) Explain the use of viscometer in the determination of molecular weight of 5 polymers.
- (D) If a polymer sample has population as:

5

- 10 molecules of molecular mass each 5,000
- 20 molecules of molecular mass each 7,500
- 25 molecules of molecular mass each 15,000.

Calcular number average and weight average molecular weights of this sample.

(E) Explain the principle and working of NMR spectrometer.

5

(F) Explain the terms: (i) Larmor Precession

5

- (ii) Chemical shift.
- Attempt any **three** of the following:—
 - (A) Explain the use of glass electrode determination of pH of a solution.

5 5

5

5

(B) Describe the experimental method for the determination of the decomposition potential of an electrolyte.

(C) Define overvoltage. An overvoltage of 0.64V is observed during electrolysis of INH₂SO₄ solution using lead electrodes. What will be the new value of over voltage if current density is increased five times, b = 0.12 V at 298 K. Calculate the value of 'a' also.

(D) Explain with the help of diagram the contruction and working of silicon solar cell.

5

1

5

5

5

- (E) Determine the solubility product and solubility of AgCl from, the following cell.
 - (-) $Ag_{(s)}$ | $AgCl_{(s)}$, KCl | $AgNo_3$ | $Ag^{(+)}$ m = 0.05 | m = 0.1 | $\gamma = 0.82$ |

The emf of the cell at 298 K is 0.450V

- (F) (i) Derive an expression to show relation between emf of the cell and change in enthalpy of the cell reaction.
 - (ii) Under what conditions, a cell becomes hot or cold during its working. 2
- 3. Attempt any three of the following:—
 - (A) What are scintillation counters used for ? Describe the working of scintillation counter with reference to photo multiplier tube.
 - (B) Answer the following:—
 - (i) What is meant by artificial radioactivity?
 - (ii) Give an example of artificial radioactivity induced by α -particle as projectile.
 - (iii) Distinguish between chemical equilibrium and radioactive equilibrium. 2
 - (C) Describe the construction and working of a nuclear power reactor.
 - (D) What is meant by tracer technique? How is it useful to establish mechanism for hydrolysis of ester?
 - (E) Calculate the decay constant of 222 Rn, if 3.0×10^{-8} g of 222 Rn is in equilibrium with 1.0g of 226 Ra. The decay constant of 226 Ra is 1.5×10^{-11} s⁻¹.
 - (F) Define Q-Value and calculate if for the following nuclear reactor.

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$$

 $^{235}U = 235.1175$ amu, $^{141}Ba = 140.9527$ amu
 $^{1}_{0}n = 1.0089$ amu, $^{92}Kr = 91.9264$ amu

- 4. Attempt any three of the following:—
 - (A) State and explain the law of symmetry of crystallography.
 - (B) Determine the number of atoms contained within: (i) a simple cubic unit cell, (ii) a body centered cubic unit cell, (iii) face centred cubic unit cell.
 - (C) The second order reflection maxima from (111) plane of NaCl occurs at $10^{\circ} 30'$. The density of NaCl is 2.16×10^{3} kgm⁻³. Calculate the wavelength of the X-rays used to obtain the second order reflection.
 - (D) Explain :— 5
 - (i) Heisenberg's Uncertainity Principle.
 - (ii) Hamiltonian operator.
 - (E) State and explain the postulate of quantum mechanics which is related to state function. 5
 - (F) What is meant by commutative property of an operator? If $\hat{A} = \frac{d}{dx}$ and $\hat{B} = 3x^2$, 5 Find out whether \hat{A} and \hat{B} commute with each other.

5.	(A)	Choose the correct answer :—	_
•	()	(a) A fast reaction is the one whose half-life varies from	
		(i) 10^{-1} to 10^{-4} s	
		(ii) 10^1 to 10^4 s	
		(iii) 10^{-12} to 10^{-10} s	
		(b) The polydispersity index of a natural polymer is ussually	
		(i) zero	
		(ii) greater than zero	
		(iii) unity	
		(c) Bakelite is an example of	
		(i) natural polymer	
		(ii) thermoplastic polymer	
		(iii) thermosetting polymer	
		(d) The total spin of ${}^1_1\mathrm{H},{}^{16}_6\mathrm{C}$ nucleus is	
		(i) zero	
		(ii) integral	
		(iii) half integral	
		OR	
	(A)	State whether True or False :—	,
	(, ,)	(p) Number average molar mass of a polymer is independent of molecular size.	-
		(q) Thermo setting plastic can be reshaped and reused.	
		(r) Higher the electron density around a proton, higher is the shielding of the	
		proton.	
		(s) The internal energy of activated complex formed durings chemical reaction,	
		is greater than that of reactants as well as products.	
	(B)	Choose the correct answer :—	4
		(a) The emf of a cell is 0.6753V at 298K and 0.6915V at 273K. The temperature	
		coefficient of this cell is	
		(i) 0.6480 VK ⁻¹	
		(ii) $-6.48 \times 10^{-4} \text{ VK}^{-1}$	
		(iii) $6.48 \times 10^{-4} \text{ VK}^{-1}$	
		(b) The thin glass bulb in glass electrode is filled with	
		(i) 0.1 MKCl saturated with AgCl	
		(ii) 0.1 MHCl saturated with AgCl	
		(iii) 0.1 MHCl saturated with Hg ₂ Cl ₂	
		(c) For sponteneous cell reaction	
		(i) ∆G is +ve and Ecell is – ve	
		(ii) ΔG is – ve and Ecell is – ve (iii) ΔG is – ve and Ecell is + ve	
		(III) AA 15 - VE AND ECEN 15 + VE	

3

	(d)	The cell $Hg_{(l)} - Hg_2Cl_2 KCl H_2Q, Q, H^+ Pt$ is used for titrating acid V/s base such that the pH at equivalence point is 7. The potential of quinhydrone	
		electrode is if $E_Q^0 = 0.699V$.	
		(i) 0.2849	
		(ii) 0.0424	
		(iii) 0.0424	
		OR	
(B)	State	whether True or False :—	4
	(p)	The ratio of quinone to hydroquinone is unity in quinhydrone.	
	(q)	The quinhydrone electrode can be used in non-aqueous medium.	
	(r)	The minimum external potential that must be applied to an electrolytic cell to	
		bring about continuous electrolysis is called overvoltage.	
	(s)	Fuel cells are used in space missions.	
(0)	Ola a a a		4
(C)		se the correct answer :—	4
	(a)	When $^{27}_{13}$ A1 undergoes (α , n) reaction, the recoil nucleus formed is	
		(i) $_{92}^{30}$ P (ii) $_{14}^{30}$ S i	
		(ii) $^{30}_{14}$ Si	
		(iii) ²³ ₁₁ Na	
	(b)	To sustain a fission reaction, the multiplication factor K should be	
		(i) greater than unity	
		(ii) less than unity	
	(0)	(iii) zero The express liberated during photosynthesis 6CO + 6H O × C H O + 60 ↑	
	(0)	The oxygen liberated during photosynthesis $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 \uparrow$ comes from	
		(i) CO ₂	
		(ii) H_2O	
		(iii) both CO ₂ and H ₂ O	
	(d)	Anthracene acts as	
	()	(i) phosphor	
		(ii) moderator	
		(iii) coolant	
		OR	_
(C)	State	whether True or False :—	4
	(p)	Radioactive equilibrium is affected by temperature and presure.	
	(q)	²³⁵ U is fissile material.	
	(r)	Threshold energy is calculated for endoergic nuclear reactions.	
	(s)	Boron and cadmium are used to prepare control rods.	

~

QP Code: 03293

3

3

(D	Choose	the corre	ct answer :-
----	--------	-----------	--------------

(a) If weiss indices of a plane are $\frac{1}{2}a$: $\frac{2}{3}b$: αc , the Miller indices of this plane

will be _____

- (i) 4:6:0
- (ii) 4:3:0
- (iii) 2:3:0

(b)	A simple cubi	c crystal has	planes	of symmetry
-----	---------------	---------------	--------	-------------

- (i) 9
- (ii) 6
- (iii) 3
- (c) $8e^{4x}$ is an eigen function of the operator d/dx, the eigen value is ______.
 - (i) 8
 - (ii) 4
 - (iii) 4x

OR

(D) State whether True or False :-

- (p) There are 4Na⁺ and 4Cl⁻ per unit cell of NaCl crystal.
 - (q) The interplanar distance ratio d_{100} : d_{110} : d_{111} for simple cubic crystal is 1:0.577:1.14.
 - (r) The condition $\hat{A}[f(x) + g(x)] = \hat{A}f(x) + \hat{A}g(x)$ is fulfilled by ______.
 - (i) Momentum operator
 - (ii) Hamiltonian operator
 - (iii) Linear operator.