	(Time: 3 Hours) Total marks:	10
N.B.	(1) All Questions are compulsory.	200
	(2) Figures to the right indicate full marks.	300
	(3) Use of the logarithmic table / non-programmable calculator is allowed.	
Q.1. A	Answer Any Four of the following: -	
(A) D	Discuss the following symmetry elements with one example each. (a) centre of symmetry (b) identity	5
(B) D (C)	Discuss the constituents of point group with reference to boron trichloride molecule. (a) Compare homonuclear and heteronuclear diatomic molecules. (b) What is point group?	5 3 2
	Oraw the molecular orbital diagram for CO (without mixing of orbitals) and explain its bond order.	5
	braw the molecular orbital energy level diagram for BeH ₂ .	5
(F) W	Trite note on structure of H ₃ ⁺ ion on the basis of molecular orbital theory.	5
Q.2.	Answer Any Four of the following: -	
	What do you understand by packing density or atomic packing factor? Show that packing factor for the bcc structure is $\sqrt{3} \pi/8$ or 68% .	5
	how that the packing factor for fcc lattice is $\sqrt{2} \pi/6$ or 74%.	5
3.	latinum crystallises in face centered cubic (fcc) crystal with a unit length of .9231A ⁰ . Calculate the density and atomic radius of platinum. Mass of 1 mol. of Pt is 195.08)	5
,	Define the following terms in crystal structure study. (a) space lattice	3
	(b) lattice points	2
	live the applications of superconducting materials.	5
(F)	(a) With a neat diagram, discuss Meissner effect.(b)Differentiate between Schottky and Frenkel defects.	3 2
Q.3.	Answer Any Four of the following: -	
	Discuss the position of lanthanides in the periodic table. Give observed electronic configurations of Cerium, Gadolinium, Terbium and Lutecium.	5
(B) E	xplain magnetic properties exhibited by lanthanides.	5
(C) H	Iow are lanthanides separated from each other by solvent extraction method?	5
o p	What is lanthanide contraction? Explain its consequences on the members of the periodic table.	5
	Write a note on complex formation tendency of lanthanides.	5
(F) (Give any five applications of lanthanides.	5

Q.4. Answer Any Four (of the following: -	
(B) With reference to liq	nd aprotic solvents? Explain with suitable exampuid ammonia as nonaqueous solvent, give baland-base reactions, (ii) Redox reactions.	
(C) Explain trends in the	physical properties of group 16 elements with renamentallic character, (ii) oxidation states.	egard to 5
	xplain in brief allotropic modifications of the	
(E) Discuss anomalous b	pehavior of fluorine.	3375
(F) Explain with diagram (ii) Chlorite ion (m, structure and bonding in (i) Hypochlorite ion ClO_2 -)	(ClO ⁻) 5
Q.5. A. State whether the (Attempt any five	e following statements are true or false : -	5
(a) The rotation axis C _n f	For water is C ₂ .	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	s; C is cycle and n is order of axis.	SP BB BB BB
	elongs to C _{3v} point group.	
	nonocentric and molecular orbitals are polycentr	
(e) NO molecule is diamated (f) In HCl molecule, the	agnetic in nature. $3p$ orbital of chlorine involved in bonding is $3p_x$	
	ectrum of H_2O shows two bands.	
-	show the change in energy of molecular orbitals	with variation in
bond angle are called	molecular orbital diagrams.	
B. Fill in the blanks with (Attempt any five	appropriate words given in the bracket: -	5
temperature, two, bigges		-
whole crystal.	geometrical portion of the crystal which can be	used to build up the
	e way of arranging in space so that avail	able space is filled
	or (APF) is defined as the fraction of space occup	pied by atoms in a
(e) The number of neares (f) YBa ₂ CH ₃ O ₇₋₈ is an ex	osest packing, each sphere is in contact with others neighbours for an atom is called cample of superconductors. s a temperature below which material shows	-
C. Select and write a	appropriate answer:- (Attempt Any Five)	5
(a) In addition to	+3 oxidation state terbium also exhibits	_oxidation state.
(i) +2 (ii) +4	(iii) +1	
(b) Electronic co	nfiguration of Uranium is	
(i) [Rn]5f ¹ 6d ¹	$7s^2$ (ii) [Rn]5f ⁷ 6d ⁰ 7s ² (iii) [Rn]5f ³ 6d ¹ 7s ²	
69009	Page 2 of 3	

4D8D3D396A1996D9CD52F4C3FBC3B4BA

	(c) Pr ³ ions exhibitc	olour.	
	(i) Reddish (ii) Yellow (iii) Green		
	(d) Yb ²⁺ is isoelectronic with		
	(i) Lu ³⁺ (ii) La ³⁺ (iii) Gd ³⁺		
	(e) Absorption spectra of lanthanides are		
	(i) diffused, band like (ii) sharp, line like (iii) sharp, band like		
	(f) Cerium is very stable in	oxidation state.	
	(i) +1 (ii) +2 (iii) +4	\$ \&\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
	(g) is colourless in +3 oxidation state.		
	(i) Neodymium (ii) Gadolinium (iii) Dysprosium		
	(h) Only lanthanide member which is radioactive is		
	(i) samarium (ii) thulium (iii) promet	hium	
D.	Match the columns:- (Attempt Any Five)		
	(a) Ionising solvent	(i) Contact process	
	(b) Liquid dinitrogen tetroxide	(ii) Haber's process	
	(c) Manufacture of Sulphuric acid	(iii) Pentagonal bipyramidal geometry	
	(d) Non-ionising solvent	(iv) H ₂ O	
	(e) ClF ₃	(v) Fluorine	
	(f) IF ₇	(vi) Chlorine	
	(g) Highest electronegativity	(vii) Carbon tetrachloride	

(viii) Bent-T structure(ix) Aprotic solvent