(Time: 3 Hours) Total marks: 100 | N.B. | (1) | All | questions | are | compu | lsory. | |------|-----|-----|-----------|-----|-------|--------| |------|-----|-----|-----------|-----|-------|--------| - (2) Figures to the right indicate full marks. - (3) Use of logarithmic table/non-programmable calculator is allowed | 1 | Attempt any four of the following: | 20/2 | | | | | | |-----|---|------|--|--|--|--|--| | | A. Classify the symmetry operations with suitable examples. Give symmetry | | | | | | | | | elements associated with them. | 32 | | | | | | | | B. Discuss the symmetry operations and assign the point group to NH ₃ molecule. | | | | | | | | | C. Draw a neat well labelled Molecular Orbital diagram of BeH ₂ molecule. | | | | | | | | | Give its structure, magnetic property and molecular configuration. | Ç | | | | | | | | D. Describe the molecular orbital energy level diagram of CO with respect to bond order and magnetic property (Hybridisation not required). | 5 | | | | | | | | E . Explain the geometry of H ₃ ⁺ ion on the basis of Walsh diagram and molecular orbital theory. | 5 | | | | | | | | F. a. Explain why covalent bond energy in heteronuclear diatomic molecule is reduced. | 3 | | | | | | | | b. Define: (i) Symmetry Operation (ii) Order of group | 2 | | | | | | | | | | | | | | | | 2. | Attempt any four of the following: | | | | | | | | | A. Explain with the help of a diagram: | 5 | | | | | | | | (i) Unit Cell (ii) Lattice parameters. | | | | | | | | | B. Define Packing density. Show that packing density for simple cubic lattice is 0.52 | 5 | | | | | | | | C. For a face centered cubic (fcc) lattice, calculate: | 5 | | | | | | | | (i) Number of atoms per unit cell (fcc) | | | | | | | | | (ii) Lattice constant (a), if atomic radii (r) of a metal is 138 pm, | _ | | | | | | | | D. With suitable example, explain Schottky defect in ionic solids. | | | | | | | | 200 | E. Explain the terms: | • | | | | | | | | (i) Superconducting Transition Temperature (T_c) (ii) Meissner's effect. F. Write a short note on Fullerenes and Alkali metal fullerides. | _ | | | | | | | | r. write a short note on Functiones and Alkan metal functions. | - | | | | | | | 3. | Answer any four of the following. | | | | | | | | | A. What are f-block elements? Give the ideal and observed electronic | 5 | | | | | | | | configurations of actinides. | | | | | | | | 29 | B. Explain the spectral properties of lanthanides. | 5 | | | | | | | | C. Explain the method of separation of lanthanides from each other by ion exchange method. | 5 | | | | | | | | D. Give reasons: | | | | | | | | | (i) Post lanthanide elements have abnormal high densities. | 3 | | | | | | | | (ii) Cerium can forms compounds with +4 oxidation state. | 2 | | | | | | 57236 Page **1** of **3** | E. | | | | | 5 | |--|---------------------------------------|--|---|--|----------------| | F. | configurations. Give the application | ons of lanthanides. | | | 5.0 | | | 11 | | | | | | | | | | | 800 | | | npt any four of the fo | · · | | | | | | - | _ | = / | n with suitable examples. | 5 | | | ith reference to liqui | - | 19.4 | | 5 | | ba | lanced equations of | * * | | 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1 | | | G N | 4 .1 .6 | (ii) Redox reactio | W > 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | V | SEPR theory. | | | re of any two on the basis of | 3.55)
0.55) | | | ive any two preparati | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 5.05 | | | ith reference to the e | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 16, discuss | the following: | 5 | | ' ' | Electronic configura | 2,0,0,0,0 | | | | | F. Di | scuss the role of V ₂ C | Os catalyst in the ox | idation of | SO ₂ to SO ₃ . | 5 | | | | | | | | | | | | | | | | | | | 8 8 7 V | | | | | er the following: | | | | | | A. M | atch the column: (A | Any five) | | | 5 | | | A S | | | B | | | a) | Inversion centre | | i). | Td | | | b) | Homonuclear diate | omic molecule | ii) | paramagnetic | | | c) | Trans-dichloroethy | lene | iii) | H ₂ molecule | | | d) | Higher symmetry J | point group | iv) | linear | | | e) | NO molecule | | v) | monocentric | | | f) | Rotation - Reflect | ion axis | vi) | 3pz | | | g) | Atomic orbitals | | vii) | C_{2h} | | | h) | HCI | | viii) | i | | | | | | ix) | C_{2v} | | | | | | x) | Sn | | | | | | xi) | polycentric | | | | | 25 X X X X X X X X X X X X X X X X X X X | | | | | | | | | | | | B. Sele | ct and write the appr | opriate answer. | | | 5 | | a. AI | B – AB type of arrang | gement of spheres i | s found in | close packing. | | | 10000 | simple cubic | F , YO (), | | (iii) hexagonal | | | N .00 (D) | oids in body centered | X .05' | | , , | | | 1 (Y () | 32% | (ii) 48% | | (iii) 52% | | | | e to Frenkel defect in | ` ' | ity | ` ' | | | | increases | (ii) decreases | J | (iii) remains same | | | d. Nb ₃ Sn is an example of superconductor. | | | | | | | | conventional | | | | | | 12/02/3 | | | | \/ 0 | | | 57726 | V 62/201421 | Dogg | 2 of 2 | | | 77F960F05B8A1CC9F33202955F5B534D ## Paper / Subject Code: 24227 / Chemistry: Inorganic Chemistry(6 Units) | e. A point in crystal latt | ice signifies of par | rticles. | |---|---|---| | (i) size | (ii) volume | (iii)) position of centre. | | f. Frenkel defect occurs | in | | | (i) Alkali halides | (ii) Silver halides | (iii) Alkali metal halides | | g. The coordination num | nber in body centered cubic | lattice is | | (i) 6 | (ii) 8 | (iii) 12 | | • • | perconductors require | | | (i) Liquid Helium | (ii) Liquid Hydrogen | (iii) Liquid Nitrogen | | | | | | C. State whether the follow | ving statements are true or | false (any five):- 5 | | a. Colour of lanthanic | le ions is mainly because of | charge transfer transitions. | | b. Outer electronic co | nfiguration of Dy ⁴⁺ is [Xe] | 478 | | c. Gd ³⁺ is colourless. | | | | d. Nobel character of | Ir may be attributed to lanth | nanide contraction. | | e. An average separat | ion factor of 1.5 is achieved | for adjacent lanthanides in 10.8M | | nitric acid. | | | | f. Compounds of Ce ⁴ | | | | g. La ³⁺ has zero magn | etic moment. | | | | | | | (b) (c) | propriate words given below | | | | Trigonal, NH ₂ , two, Bent | T shape, NH ₂ ⁺ , one, Flourine, O ₄ , | | 98% H ₂ SO ₄ , Iodine) | | | | | is an aprotic sol | vent | | b. BrF3 molecule has a | | πε. 32 | | | of autoionisation of liquid N | O. (-X | | | 7 need only electrons to | o complete their octet. | | e. does no f. An allotropic form of | | | | 37 30 4 27 70 36 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | osorb Sulphur trioxide in Co | antest Process | | gas used to at | soro Surphur trioxide in Co | omact i focess. | | | | | | | | | 57236 Page **3** of **3**