(Time: 3 Hours) Total marks: 100

N.B.	(1)	All	questions	are	compu	lsory.
------	-----	-----	-----------	-----	-------	--------

- (2) Figures to the right indicate full marks.
- (3) Use of logarithmic table/non-programmable calculator is allowed

1	Attempt any four of the following:	20/2					
	A. Classify the symmetry operations with suitable examples. Give symmetry						
	elements associated with them.	32					
	B. Discuss the symmetry operations and assign the point group to NH ₃ molecule.						
	C. Draw a neat well labelled Molecular Orbital diagram of BeH ₂ molecule.						
	Give its structure, magnetic property and molecular configuration.	Ç					
	D. Describe the molecular orbital energy level diagram of CO with respect to bond order and magnetic property (Hybridisation not required).	5					
	E . Explain the geometry of H ₃ ⁺ ion on the basis of Walsh diagram and molecular orbital theory.	5					
	F. a. Explain why covalent bond energy in heteronuclear diatomic molecule is reduced.	3					
	b. Define: (i) Symmetry Operation (ii) Order of group	2					
2.	Attempt any four of the following:						
	A. Explain with the help of a diagram:	5					
	(i) Unit Cell (ii) Lattice parameters.						
	B. Define Packing density. Show that packing density for simple cubic lattice is 0.52	5					
	C. For a face centered cubic (fcc) lattice, calculate:	5					
	(i) Number of atoms per unit cell (fcc)						
	(ii) Lattice constant (a), if atomic radii (r) of a metal is 138 pm,	_					
	D. With suitable example, explain Schottky defect in ionic solids.						
200	E. Explain the terms:	•					
	 (i) Superconducting Transition Temperature (T_c) (ii) Meissner's effect. F. Write a short note on Fullerenes and Alkali metal fullerides. 	_					
	r. write a short note on Functiones and Alkan metal functions.	-					
3.	Answer any four of the following.						
	A. What are f-block elements? Give the ideal and observed electronic	5					
	configurations of actinides.						
29	B. Explain the spectral properties of lanthanides.	5					
	C. Explain the method of separation of lanthanides from each other by ion exchange method.	5					
	D. Give reasons:						
	(i) Post lanthanide elements have abnormal high densities.	3					
	(ii) Cerium can forms compounds with +4 oxidation state.	2					

57236 Page **1** of **3**

E.					5
F.	configurations. Give the application	ons of lanthanides.			5.0
	11				
					800
	npt any four of the fo	· ·			
	-	_	= /	n with suitable examples.	5
	ith reference to liqui	-	19.4		5
ba	lanced equations of	* *		0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
G N	4 .1 .6	(ii) Redox reactio	W > 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
V	SEPR theory.			re of any two on the basis of	3.55) 0.55)
	ive any two preparati	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			5.05
	ith reference to the e	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	16, discuss	the following:	5
' '	Electronic configura	2,0,0,0,0			
F. Di	scuss the role of V ₂ C	Os catalyst in the ox	idation of	SO ₂ to SO ₃ .	5
			8 8 7 V		
	er the following:				
A. M	atch the column: (A	Any five)			5
	A S			B	
a)	Inversion centre		i).	Td	
b)	Homonuclear diate	omic molecule	ii)	paramagnetic	
c)	Trans-dichloroethy	lene	iii)	H ₂ molecule	
d)	Higher symmetry J	point group	iv)	linear	
e)	NO molecule		v)	monocentric	
f)	Rotation - Reflect	ion axis	vi)	3pz	
g)	Atomic orbitals		vii)	C_{2h}	
h)	HCI		viii)	i	
			ix)	C_{2v}	
			x)	Sn	
			xi)	polycentric	
		25 X X X X X X X X X X X X X X X X X X X			
B. Sele	ct and write the appr	opriate answer.			5
a. AI	B – AB type of arrang	gement of spheres i	s found in	close packing.	
10000	simple cubic	F , YO (),		(iii) hexagonal	
N .00 (D)	oids in body centered	X .05'		, ,	
1 (Y ()	32%	(ii) 48%		(iii) 52%	
	e to Frenkel defect in	` '	ity	` '	
	increases	(ii) decreases	J	(iii) remains same	
d. Nb ₃ Sn is an example of superconductor.					
	conventional				
12/02/3				\/ 0	
57726	V 62/201421	Dogg	2 of 2		

77F960F05B8A1CC9F33202955F5B534D

Paper / Subject Code: 24227 / Chemistry: Inorganic Chemistry(6 Units)

e. A point in crystal latt	ice signifies of par	rticles.
(i) size	(ii) volume	(iii)) position of centre.
f. Frenkel defect occurs	in	
(i) Alkali halides	(ii) Silver halides	(iii) Alkali metal halides
g. The coordination num	nber in body centered cubic	lattice is
(i) 6	(ii) 8	(iii) 12
• •	perconductors require	
(i) Liquid Helium	(ii) Liquid Hydrogen	(iii) Liquid Nitrogen
C. State whether the follow	ving statements are true or	false (any five):- 5
a. Colour of lanthanic	le ions is mainly because of	charge transfer transitions.
b. Outer electronic co	nfiguration of Dy ⁴⁺ is [Xe]	478
c. Gd ³⁺ is colourless.		
d. Nobel character of	Ir may be attributed to lanth	nanide contraction.
e. An average separat	ion factor of 1.5 is achieved	for adjacent lanthanides in 10.8M
nitric acid.		
f. Compounds of Ce ⁴		
g. La ³⁺ has zero magn	etic moment.	
(b) (c)	propriate words given below	
	Trigonal, NH ₂ , two, Bent	T shape, NH ₂ ⁺ , one, Flourine, O ₄ ,
98% H ₂ SO ₄ , Iodine)		
	is an aprotic sol	vent
b. BrF3 molecule has a		πε. 32
	of autoionisation of liquid N	O. (-X
	7 need only electrons to	o complete their octet.
e. does no f. An allotropic form of		
37 30 4 27 70 36 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	osorb Sulphur trioxide in Co	antest Process
gas used to at	soro Surphur trioxide in Co	omact i focess.

57236 Page **3** of **3**