(F) A substance was exposed to radiation of wavelength 4.4 × 10-6 m. A Raman line appeared at 4.6 × 10-6 m. Is it Stokes's line or anti-Stoke's line? Calculate the

Raman shift.

TURN OVER

MS-Con. 3605-16.

- 2. Attempt any three of the following :-
 - (A) Derive Nernst equation for single electrode potential.

- , 7°5
- (B) Derive an expression for emf of electrolyte concentration cell without transference 5 reversible to anion.
- (C) Calculate mean activity coefficient of KCl in a solution containing 0.1m KCl and 0.01 m CaCl₂ (A = 0.509 at 298 K)
- (D) Explain any three types of ion specific electrodes with examples 5
- (E) Derive an equation for emf of electrolyte concentration cell with transference reversible to cation.
- (F) The emf of the cell

5

is 0.0037 volt at 298 K. Calculate t_{H+} and t_{Cl}

- 3. Attempt any three of the following:
 - (A) Derive Clapeyron equation.

5

- (B) Define boiling point. A solution containing 1.5g of non-volatile solute in 150g CCl₄ gave boiling point elevation of 0.75K. If molal elevation constant is 5.02K kg mol⁻¹, Calculate the molecular weight of the solute.
- (C) State the Gibbs phase rule and explain the terms involved.

5

(D) Derive the equation $\Delta T_f = K_f m$

5

(E) Explain the application of phase rule to water system.

5

(F) Explain the phase diagram of a three component system.

5

KS-Con. 3605-16.

[TURN OVER

		QP Code : 77097	
		3	0/2
1.	Atter (A)	mpt any three of the following:- Explain the determination of surface area of an adsorbent on the basis of BET equation.	5
	(B)	What are the characteristic features of a catalyst?	5
	(C)	Give an account of the origin of charge on colloidal particles.	5
	(D)	Define adsorbent. The volume of gas adsorbed at S.T.P. and required to form a monolayer on 1g silica gel is 0.130dm ³ . Calculate the surface area of silica gel, if area occupied by each gas molecule is 16.0 × 10 ⁻²⁰ m ² .	5
	(E)	Write a note on electrophoresis.	5
	(F)	What are surfactants? How are they classified?	5
5.	(A)	State true of false:- (a) Unit of dipole moment is Debye	4
	3	(b) Dipole moment helps in elucidating molecular structure of compounds.	
	4.	(c) In bending vibrations the bond angle changes.	
		(d) Higher the value of force constant, greater is the bond strength.	
		OR	
	(A)	(p) Polar molecule (q) SO ₂ (ii) (3n-5) (r) Linear molecule (s) Rocking (iv) In-plane vibration (v) (3n-6)	4
	(B)	 State true of false:- (a) In a galvanic cell, oxidation takes place at left hand electrode. (b) For an ideal solution γ = 1 (c) The salt used in salt bridge is KCl (d) HCl is a uni-bivalent electrolyte. 	4
5	2	OR [TURN OVER	

KS-Con. 3605-16.

	QP Code : 7709	7 3
	4	,6
(b)	Match the following:- (p) Uni-trivalent electrolyte (q) Pt / Sn ⁺² , Sn ⁺⁴ (r) Reduction (s) Salt bridge (i) Redox electrode (ii) a = 27 m ⁴ γ ⁴ (iii) agar-agar (iv) gain of electrons (v) gas electrode State true or false:- (a) Reverse osmosis is as a large series of the content of	
(C)	 (b) Osmosis occures in plant cells. (c) In sulphur system at the triple points F = 0. (d) Condensed phase rule is written as F = C - P + 2. 	4
(C)	Match the following:- (p) Binodal curve (q) Eutectic point (r) Reverse osmosis (s) Raoult's law (i) Lead-silver system (ii) Water purification (iii) lowering of vapour pressure (iv) Ternary system (v) K _b	4
(D)	State true or false:- (a) Catalyst poisons supress the activity of the catalyst. (b) Hydrolysis of methyl acetate is an example of acid-catalysis. (c) The migration of dispersion medium is called electrophoresis.	3
	OR	
(D)		3

KS-Con. 3605-16.