(3 Hours)	[Total Marks: 100

Please check whether you have got the right question paper.

N.	2. Fi 3. U		licate full marks. rogrammable calculator is a		
	4. A	nswers for the same	question as far as possible	should be written together.	75,65
1. (A)) Select	the correct option ar	nd complete the following	sentences. (any twelve)	
	(i)			Bravais lattices.	5
			(b) 14,7		
	(ii)			centered cubic system is	
		(a) 4	(b) 2	(c) 3	
	(iii)		accelerates a reaction by o	lecreasing the energy of	
		activation of the re			
			(b) inhibitor		
	(iv)	The enzyme which	can catalyse the conversion	on of into glucose	
		is maltase.			
		(a) maltose	(b) invertase	(c) zymase	
	(v)	The	equation for diffraction of	X-rays is $n\lambda = 2d\sin\theta$.	
		(a) Bragg's	(b) Plank's	(c) de-Broglie	
	(vi)	The total number o	f effective atoms in	system is 2.	
	` '		l cubic (b) body centred		
	(vii)		ngly acidic cation is in bety		
	()		(b) 6 to 11.5		
	(viii)	The cation is stron	gly acidic if z^2/r is in between	veen .	
	32	(a) 0.1 to 0.16	(b) 0.01 to 0.04	(c) 0.04 to 0.1	
	(ix)	Pure phosphoric ac	(b) 0.01 to 0.04 cid is crystalli	ne solid	
		(a) vellowish	(b) greyish	(c) white	
_	(x)		consible for acid rain.	(e) white	
36			(b) HCl	(c) CH ₃ COOH	
197. J	(vi)		ater than 14 for	* *	
	(xii)		(b) weakly acidic king of chemicals.	(c) recory acruic	
	(XII)	(a) HNO ₃	(b) H ₂ SO ₄	(a) H.DO.	
256			diketone are required in	(c) H ₃ PO ₄	
	(xiii)		diketone are required in	i Hantzsch synthesis of	
		pyridine.	(1-) 1 4	(-) 1 5	
- 170°		(a) 1,3-	(b) 1,4-	(c) 1,5-	
PARTY.	(xiv)			kes place at position	
2327	7.5000	(a) 2 and 5	(b) 3 and 5	(c) 3	
J. 833	(xv)	V) - X, (\$0 Y Y Y Y Y Y Y	ran can be carried out by a		
10 O' 6	10,00 A	(a) H_2SO_4	(b) SO ₃ and pyr	ridine (c) oleum	

65416 Page 1 of 3

Paper / Subject Code: 78838 / Chemistry : Paper II

		(xvi) Benzene diazonium chloride when reduced with NaHSO ₃ gives (a) phenyl hydrazine (b) phenyl hydrazone (c) hydrazobenzene				
		(xvii)	Nitration of aniline mainly gi	ives		
		(xviii)			om temperature gives e (c) 2,4,6-tribromoaniline	
	(B)	State whether the following statements are true or false. (any three) (i) As temperature increases the rate of reaction decreases and the energy of activation increases.			230 2000 2000	
		(ii)	Sodium chloride crystallises in	the face centre	d cubic lattice form.))
		(iii)	Hydrolysis of hydrated cation		tion basic.	
		(iv)	Phosphoric acid is a mineral ac			
		(v)	Friedel - Crafts reaction of the	CAN OF CANA	rried out by using AlCl ₃ .	
		(vi)	Pyrrolidine is a stronger base t	han pyrrole.		
						_
	(C)		the column. (any five)			5
		(i)	Inhibitor	(a)	Zn^{2+}	
		(ii)	Promoter		Al ³⁺	
		(iii)	Weakly acidic cation	(c)	$K_b = 54 \times 10^{-5}$	
		(iv)	Moderately acidic cation	(d)	Increases activity of catalyst	
		(v)	Dimethyl amine	(e)		
		(vi)	Aniline	(f)	Face centred cubic	
				(g)		
				(h)		
				(i)	Retards rate of reaction	
	A 44 a -		6 3 3 6 41 Call 3 4 5			20
			y four of the following.		control cyles?	20
			are (100), (110) and (111) plane			
	(B)		are X-rays used to determine the	2 / TO 6 / TO V	•	
		\sim	e Michalis-Menten equation for	J 10 TO	818.	
	(D)	0 1 VT V1	in characteristic features of a ca organic salt of molecular weigh	N / A Th	city 1 874 v 103 Kg m ⁻³	
	(E)		olganic san of molecular weigh Illises in a form like NaCl. Calci	A.F.	•	
			adro's number is 6.023 x 10 ²³ m			
?	(F)		in the kinetics of acid-base cata			
, ,		LAPIA	in the kineties of acid-base cata	1 y 515.		
	Atte	mpt an	y four of the following.			20
	40'07	VO_ V VV.		ation with suital	ble diagram. How can cation	20
(A) Explain the process of hydration of cation with suitable diagram. How can cation render acidity to the solution?			and and an out of			
(B) Explain the relationship between p K_a , acidity and Z^2/r ratio of monoatomic ca			/r ratio of monoatomic cations			
	20 A		eans of graphical presentation.	, una 21		
7	(C)	/	the help of predominance diagra	ams explain nor	acidic cations and feebly	
5		1 42	cations with suitable examples	_		
3	820	7720	S. S. S. S. S.			
		() () - Y	(N'ON' D' T			

65416 Page 2 of 3

2.

Paper / Subject Code: 78838 / Chemistry: Paper II

- (D) Write Latimer equation to calculate hydration energy of anion and explain the terms involved in it. Using this equation, calculate ΔH_{hyd} for F⁻ ion. (Given radius of F⁻ ion is 119pm.)
- (E) Write physical properties of sulphuric acid.
- (F) Write a note on uses of phosphoric acid.

4.	Attempt any four of the following.			
	(A)	(i) Give the preparation of a) 2-chlorothiophene, b) 2-nitrothiophene and	3	
		c) thiophene-2-sulphonic acid from thiophene.	300	
		(ii) Discuss aromaticity of furan.	2	
	(B)	(i) Explain Chichibabin reaction of pyridine.	3	
		(ii) Give the carbylamine reaction of primary amines.	2	
	(C)	(i) 'Pyridine gives nucleophilic substitution at 2,4 and 6 positions'. Explain.	3	
		(ii) How is primary amine obtained by reductive amination of aldehyde and ketone?	2	
	(D)	(i) Write a note on Hofmann exhaustive methylation (HEM).	3	
		(ii) Give Paal-Knorr synthesis for the preparation of pyrrole.	2	
	(E)	(i) How will you distinguish between ethyl amine, diethyl amine and triethyl amine using nitrous acid?	3	
		(ii) Explain Vilsmeier-Haack reaction of pyrrole.	2	
	(F)	(i) Give azo-coupling reaction of benzene diazonium chloride with a) Phenol and b) N,N-dimethyl aniline.	3	
		(ii) How is hydrazobenzene prepared from nitrobenzene?	2	
5.	Attempt any four of the following.			
	(A)	Sodium chloride has a face centred cubic lattice and the length of the cube edge is 6.56 A°. Calculate d ₁₁₀ and d ₁₁₁ .	5	

(C) With the help of suitable predominance diagram, explain the behaviour of F and

5

5

5

3

2

3

2

Write a note on activity of nanoparticles as a catalyst.

(ii) How is chlorobenzene obtained by Sandmeyer reaction?

(E) (i) Describe Hofmannn degradation of amides.

(i) Explain Diel's-Alder reaction of furan.

(ii) Why is pyridine more basic than pyrrole?

S² in aqueous solution.(D) Write a note on acid rain.

(B)

(F)

65416 Page 3 of 3