(3 Hours)

QP Code: 19766

(Total Marks: 100

	An questions are com			
2.	Answers to the same	question must be writt	en together.	
3.	Figures to the right in	ndicate full marks.		
4.	The use of log table /	non-programmable ca	llculator is allowed.	
1 (A) Cala	at the a agus at aution an	d a america de Calleria		10
	=	d complete the following	-	12
(1)		· · · · · · · · · · · · · · · · · · ·	le of reaction.	
(;;)		(b) parallel		
(11)	(a) 1 A Fa/RT	rrhenius equation is	-Ea/pr	
(;;;)		(b) $k = A \cdot e^{-Ea/RT}$		
(111)		•	n from Raoult's law?	
(iv)		(b) C ₆ H ₆ & CCl ₄		
(1V)		ideal solution are		
(v)		(b) $\Delta V = 0 \& \Delta H = 0$	$(C) \Delta V \neq 0 \& \Delta H = 0$	
(٧)	Borax is synthesized f	(b) mica	(c) tincal	
(vi)	In silica central atom	silicon undergoes	hybridization	
(11)	(a) sn	(b) mica silicon undergoes (b) sp ²	$\frac{11901101201011}{(c) sn^3}$	
(vii)			tities produces hysterical	
(111)	laughter.	marea in inoderate quant	arties produces my sterreur	
	(a) NO	(b) N_2O	(c) NO ₂	
(viii)		the elements of group	2	
(,,,,,)	(a) arsenic	(b) bismuth		
(ix)			laisen-Schmidt reaction.	
()	(a) $\overline{C_6H_5CHO} + CH_3C$			
	(b) $C_6H_5CHO + CH_3C$			
	(c) $C_6H_5CH_2CHO + H_2$	-		
(x)	The solven	ts favour enol formation	n.	
, ,	(a) polar and protic			
	(b) non-polar and ap	protic		
	(c) polar and aprotic	·		
(xi)	Cyanohydrin has	groups.		
•	(a) -CN and -OH	(b) $-CN$ and $-NH_2$	(c) $-CN$ and $-NO_2$	
(xii)	NaBH ₄ can reduce			
	(a) $> C = O$ and $-CN$	(b) > C = 0	(c) $> C = O$ and $-NO_2$	

Q

QP Code: 19766

3

5

2

- (B) State whether the following statements are **true** or **false**:
 - (i) Phenol Water system is an example of lower critical solution temperature.
 - (ii) Banana bond is a 3e 2c bond.
 - (iii) If a compound contains both aldehyde and ketonic group, then the ketone is considered as the parent compound.
- (C) Match the following columns:

Column A	Column B
(i) Chain carriers	$(p) A \to B \to C$
(ii) Parallel reaction	$(q) \qquad A \longrightarrow B \qquad C$
(iii) BF ₃	(r) atoms and free radicals
(iv) Metalloid	(s) germanium
(v) CHO	(t) lewis acid
	(u) lead
	(v) cyclohexane carbaldehyde
	(w) carbaldehyde cyclohexane

2. (A) (i) Explain with suitable examples what is meant by:

5

- (a) parallel reactions.
- (b) reversible reactions.
- (ii) State the important assumptions of the collision theory of reaction rates.

3

(A) (i) Explain the terms "Upper critical solution temperature" and "lower critical solution temperature".

OR

5

(ii) State and explain Raoult's law.

3

5

(B) (i) An organic liquid was subject to steam distillation. The liquid in the flask boiled at 90°C. The external pressure was found to be 9.789×10⁴ Nm⁻². The vapour pressure of water at 90°C is 7.012×10⁴ Nm⁻². The ratio of the weights of liquid to water in the distillate was found to be 2.47. Calculate the molecular weight of the liquid.

[Given : Molecular weight of water = 18].

(ii)	A solution of two liquids A & B exhibits ideal behaviour. The mole fraction of A is 0.4, the vapour pressure of the pure component A is 0.5bar and that of B is 0.3bar. Calculate the partial vapour pressure of A and B in solution.	3
	OR	
(B) (i)	The rate constant of a reaction increases by 7%. When the temperature is raised from 300 K to 310 K. Calculate the energy of activation of the reaction [$R = 8.314 \text{ J.K}^{-1} \text{ mol}^{-1}$].	5
(ii)	For the first order reaction, $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ the frequency factor	3
	A is 4.13×10^{13} s ⁻¹ and Ea is 103.35 kJ mol ⁻¹ . What is the rate constant at 300 K? [R = 8.314 J K ⁻¹ mol ⁻¹].	
(C) Wr	rite a note on azeotropic mixtures.	4
(C) WI	OR	4
(C) Gir	ve the merits of collision theory.	4
(A) (i)	What are electron deficient compounds? Discuss bonding in diborane molecule.	5
(ii)	Draw the structure of tetraborane molecule and calculate the total number of electrons involved. OR	3
(A) (i)	Discuss the Czochralski's pulling technique for preparation of single	5
(11) (1)	crystals of germanium.	
(ii)	Name the elements of group 14. Give their electronic configuration.	3
(B) (i)	How is silicon tetrachloride prepared? Discuss structure and bonding involved in silicon tetrachloride.	5
(ii)	Draw and describe the structure of silica.	3
	OR	
	Discuss the preparation, properties and structure of nitric oxide.	5
(ii)	Give a brief account of halides of group 15 elements.	3
(i	ith reference to elements of boron family, explain the trend in the following: atomic radii and ionization energy. melting and boiling points. OR	4

3.

QP Code: 19766

4

 (C) Explain the following: (i) Ammonia is highly soluble in water but other hydrides are less soluble. (ii) NO₂ is coloured, while N₂O₄ is colourless. 	4
4. (A) (i) Explain the mechanism of Cannizzaro reaction.(ii) Give preparation of propanoic acid from ethyl acetoacetate. OR	5
(A) (i) (a) Write a note on Rosenmund reduction.(b) What are stabilised enols?(ii) How will you obtain 2-pentanone from acetyl acetone?	3 2 3
(B) (i) (a) Discuss the preparation of aldehydes and ketones by oxidation of alcohols using PCC.	3
 (b) Discuss the reduction of crotonaldehyde by using LiAlH₄. (ii) Give the mechanism of acid catalysed enolisation. OR 	2 3
(B) (i) (a) How will you obtain C ₆ H ₅ COCH ₃ , C ₆ H ₅ COC ₆ H ₅ and C ₆ H ₅ COCH ₂ C ₆ H ₅ from benzene using Friedel-Craft's acylation?	3
(b) Explain with reaction what happens when cinnamaldehyde is added to LiAlH ₄ .	2
(ii) Discuss the general mechanism of acid catalyzed nucleophilic addition to carbonyl group.	3
(C) Give the preparation of acetal and cyclic ketal. OR	4
(C) Complete the following reactions and find A and B: (i) $H_3C-CO-CH_3+CH_3-NH_2 \rightarrow A \xrightarrow{H_1^+} B$. (ii) $C_6H_5COCH_3+C_6H_5-NHNH_2 \rightarrow A$. (iii) $C_6H_5CHO+NaHSO_3 \rightarrow A$.	4
 Attempt any four of the following: (A) At 287°C at a concentration of 1 mol.dm⁻³, the number of AB molecules colliding per second is 5×10³⁰cm⁻³. If the activation energy of the reaction, 2AB → A₂ + B₂ is 1.76×10⁵ Jmol⁻¹ Calculate the number of AB molecules reacting per cm³ per second. 	5

QP Code: 19766

5

(B)	State and explain Nernst Distribution law.	3
(C)	How is borax prepared from Colemanite mineral? Discuss the properties	5
	and uses of borax.	
(D)	With respect to manufacture of ammonia by Haber's process, explain	5
	the following physicochemical principles.	
	(i) Effect of temperature.	
	(ii) Effect of concentration.	
(E)	Explain the mechanism of Benzoin condensation.	5
(F)	Give the IUPAC name of CH ₃ CHO, give its preparation from ethyne.	5
	What happens when C ₆ H ₅ CHO is treated with CH ₃ - CH ₂ - Mg - Br and	
	the product obtained is further hydrolysed?	