63816

Time: 3 Hours		ours Total Marks: 100
		Please check whether you have got the right question paper.
N.E	3. : 1. All	Questions are compulsory.
	2. Fig	gures to the right indicate full marks.
	3. Us	e of log-table / nonprogrammable calculator is allowed.
	4. An	swers for the same question as far as possible should be written together.
1. (A)	Select t	he correct option and complete the following sentences. (any twelve)
11 (12)	(i)	Solution is a mixture of two or more non-reacting substances. (a) homogeneous (b) simple (c) heterogeneous
	(ii)	By fractional distillation constituents of can be separated. (a) non ideal solution (b) ideal solution (c) any mixture
	(iii)	The plot of $\log k$ versus T^{-1} is linear with a slope. (a) positive (b) negative (c) zero
	(iv)	In a chain reaction, the reactive intermediates like atoms or free radicals are produced in chain step. (a) termination (b) inhibition (c) initiation
	(v)	Chlorination of toluene is an example of reaction. (a) consecutive (b) parallel (c) reversible
	(vi)	The temperature at which two conjugate solutions merge into one another to form a single layer is called (a) distillation temperature (b) critical solution temperature (c) evaporation temperature.
	(vii)	In diborane molecule, number of terminal B-H bonds are (a) 2 (b) 4 (c) 6
	(viii)	Molecular formula of borax is (a) Na ₂ B ₄ O ₇ .10H ₂ O (b) NaB ₄ O ₇ .10H ₂ O (c) Na ₂ B ₄ O ₆ .10H ₂ O
BAN A	(ix)	Silicon tetrachloride has structure. (a) triangular (b) octahedral (c) tetrahedral
	(x)	is the incorrect statement. (a) Silicon is extensively used as a semiconductor (b) Silicon occurs in free state in nature (c) SiO ₂ is inert
	(xi)	Thermal stability of hydrides gradually from NH ₃ to BiH ₃ . (a) increases (b) decreases (c) remains same
	(xii)	In nitrous oxide, oxidation state of nitrogen is (a) $+1$ (b) $+2$ (c) $+3$
	(xiii)	The aldehyde used in the Knoevenagal reaction has (a) α -H atom (b) α - and β -H atom (c) no α -H atom
	(xiv)	The hybridisation of 'C' and 'O' in the $>$ C = O group is (a) sp^3-sp^3 (b) sp^2-sp^2 (c) sp^3-sp^2

Page 1 of 4

	(XV)		non of benzene can be ca					
		(a) CH ₃ COCl	(b) CH ₃ COOH (c) CH ₃ OCH ₃				
	(xvi)	The general structu	re of enamine is					
		(a) $>$ C =C= N-	(b) $>$ C = \dot{C} -N<	(c) >C -C-N<				
	(xvii)	<u>-</u>	in the Cannizzaro reaction					
	,	(a) α-H atom	(b) α - and β -H ator					
	(xviii)	• •	may be prepared by the action of one mole of CH ₃ MgI on ethyl					
			y hydrolysis of addition					
		(a) Methanol	(b) Acetaldehyde	(c) Isopropyl alcohol				
(B)	Stata	whathar the following	statements are true or fal	co (any three)				
(D)	(i)			vents must be miscible with				
	(1)	each other.	button fatto, the two sory	rents must be miscible with				
	(ii)	Ideal solutions obey D	lalton class	2777 X X X X X X X X X X X X X X X X X X				
	(iii)	BH ₃ does not exist in						
	(iv)		+ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	to four oxygen atoms and				
	(11)		onded to two silicon ato	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,				
	(v)			onic group, then the aldehyde				
	(1)	is considered as the pa		ene group, then the didenyte				
	(vi)	- 1 0 1 - 1 V 3-0	ore reactive towards nuc	eleophilic reagent than				
	(11)	aldehydes.		N. S.				
		03,422,00		4. 14. 16.				
(C)	Match	n the column. (any five)		2. 2°,				
` ,	(i)	Temperature coefficie		Odd electron molecule				
	(ii)	Raoult's law	(b)	Tetrahedral				
		NH ₃	(c)	$k_{(T+10)}$				
	20			$\frac{}{}$				
	(iv)	Nitric oxide	(d)	H ₅ C ₂ OOC-CH ₂ -COOC ₂ H ₅				
	(v)	Acetal	(e)	$p^0 - p$				
163	997 Z			$x_2 = \frac{p^0 - p}{p^0}$				
RO P	(vi)	Diethyl malonate	(f)	$OC_2H_5^P$				
	18 8 6			CH ₃ -C				
				OC_2H_5				
				H				
			(g)	C_1				
VA C				$K = \frac{C_1}{C_2}$				
7 4 A	V V () ()	5444 6 5 4 4 4 6 6 9, 4 4 6 6 9, 4 6 6 9, 4 6 6 9, 4 6 6 9, 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(h)	Square planar				
A COS	3 6 VX		(i)	CH ₂ -COOC ₂ H ₅				
30,0	A O A		()					
OF FILE	\$ \Q. \D. \Q.			CH ₂ -COOC ₂ H ₅				

2.	Atte	mpt any four of the following.	_20
	(A) (B)	State and explain Nernst's distribution law. What are its important applications? State Raoult's law. With the help of suitable diagrams explain positive and	X 20
		negative deviations from Raoult's law.	\$ 20
	(C)	The vapour pressures of pure benzene and toluene at 40° C are 2.453×10^{4} Nm ⁻² and 7.864×10^{3} Nm ⁻² respectively. Mole fraction of benzene in the solution is 0.40.	
		Assume that the solution is an ideal one. Calculate	
		(i) the partial pressure of benzene and toluene	
		(ii) the total vapour pressure of the solution and	5,5
		(iii) the mole fraction of benzene in the vapour above the solution.	D C
	(D)	State the important assumptions of the collision theory of reaction rates. What are the drawbacks of this theory?	3
	(E)	What is meant by 'energy of activation' in kinetic studies? How it is determined experimentally?	
	(F)	For the reaction, $C_2H_5I + OH^- \rightarrow C_2H_5OH + I^-$, the rate constants were found to be 5.03×10^{-2} at 289 K and 6.71 at 333K.Calculate the energy of activation for the reaction. [$R=8.314 \text{ J mol}^{-1} \text{ K}^{-1}$]	
3.	Atte	mpt any four of the following.	20
	(A)	Among BF ₃ and BCl ₃ , who is strong Lewis acid? Explain.	
	(B)	Draw a structure of tetraborane. How many terminal and bridge bonds are in its structure? Calculate total number of electrons involved in it.	
	(C)	What is silica? Why is it inert?	
	(D)	Explain zone refining technique for the purification of germanium.	
	(E)	Find oxidation state of nitrogen in N ₂ O and N ₂ O ₅ and explain their structures.	
	(F)	Explain synthesis of ammonia by Bosh - Haber process.	
	.		
4.		mpt any four of the following.	•
	(A)	i) Give preparation of benzaldehyde and acetophenone by oxidation of alcohol by using PCC.	3
	5	ii) Discuss the reduction of 3-phenyl-2-propenal by using LiAlH ₄ .	2
	(B)	i) Explain general mechanism of acid catalyzed nucleophilic addition to carbonyl compound.	3
		ii) How is primary alcohol obtained from Grignard reagent?	2
	(C)	Give preparation of:	5
25 X		i) 2-butanone from acetyl acetone	
100		ii) succinic acid from ethyl acetoacetate.	
80°	(D)	i) Write a note on Rosenmund reduction.	3
7.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ii) How benzaldehyde cynohydrin and benzaldehyde phenyl hydrazone are obtained from benzaldehyde?	2
73	(E)	i) Give the mechanism of base catalyzed enolisation.	3
300	TE S	ii) Discuss the reduction of 2-butenal by using NaBH ₄ .	2
	(F)	Explain the mechanism of Claisen-Schmidt reaction.	5
1	1 12 X	\$`\Z`K_`O`\Z`\O`\Z`\V	

5. Attempt any four of the following	5.	Attempt a	ny four	of the	following
---	----	-----------	----------------	--------	-----------

acids?

(A) What are the important steps involved in a chain reaction? Explain the steps involved in the reaction between hydrogen and bromine.

5

5

- (B) At 560 K, at a concentration of 1 mol dm⁻³, the number of XY molecules colliding per cm³ per second is 5×10³⁰. If the activation energy of the reaction, 2XY → X₂ + Y₂ is 1.76×10⁵J mol⁻¹, calculate the number of XY molecules reacting per cm³ per second. [R= 8.314 J mol⁻¹ K⁻¹]
- (C) Write a note on formation of trihalides and pentahalides of the elements of nitrogen 5 family.
- (D) With suitable diagram, explain Czochralski pulling technique for purification of silicon.
- (E) i) Write a note on Gattermann Koch formylation.
 ii) What are active methylene compounds? Why are they considered as carbon
- (F) Explain the mechanism of benzoin condensation. 5

