	3 hrs	(100 Marks)
e: A	Il questions are compulsory	
F	igures to right indicate full marks	000000000000000000000000000000000000000
		10000000000000000000000000000000000000
. A. F	Fill in the blanks with suitable option and rewrite the statement (any TWELVE)	(12)
i.		5,3,0,000
	per test is	25 2 2 2 2 CO
	a. 1 to 0.1 g b. 10 to 100 mg c. 1 to 10 mg	
11.	By calibration of apparatus errors can be minimized.	
	a. Instrumental b. operational c. personal	
111.	Blowing of a pipette is error.	
:	a. Operational b. instrumental c. methodic	
1V.	Spectrophometric measurements belong to method of analysis.	
*7	a. electroanalytical b. titrimetric c. optical	
٧.	DTA is a method of analysis. a. Titrimetric b. electro-analytical c. Thermal	2003)
¥71	Sample is a small representative replica of the	200
V1.	a. universe b. error c. analytical sample	2 () () () () () () () () () (
3711	For Acetic acid vs NaOH titration is used as indicator.	5
V11.	a. Phenolphthalein b. Methy Orange c. Crystal Violet	
wiii	Ostwald's ripening refers to of precipitate.	
V 111	a. Drying b. Filteration c. Digestion	
ix	The neutralization of weak acid and strong base titration will be at pH	
174.	a. 7 b. less than 7 c. more than 7	•
х.	During titration the solution in the burette is called	
	a. Indicator b. titrand c. titrant	
хi.	Complexometric titrations are titration between EDTA and	
	a. Oxidising agents b. metal ions c. anions	
xii.	In thermogravimetry the weight of sample is recorded as a function of	
	a. mass b. temperature c. concentration	
xiii	. Absorbance and transmittance of an absorbing solution are related by the	
	expression a. $A = 1 / T$ b. $A = log_{10}T$ c. $A = -log_{10}T$	
xiv	. Bathochromic effect is the shift in absorption to	
	a. Shorter wavelength b. longer wavelength c. very high peak	
XV.	Wavelength of ultra-violet light is	
E DY	a. 400 to 750 nm b. 200 to 400 nm c. 400 to 750 m	
xvi		
8000	a. plastic b. quartz c glass	
xvi	80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
430	a. Visible b. Infra red (IR) c. Ultra violet (UV)	
xvi		
3000	a. absorbance b. adsorbance c. emission intensity	
3000 S		
В.	State whether the following statements are true or false (any Three)	(3)
SOF	i) The instrumental analysis is also known as classical analysis.	
25.5	ii) Analytical sample means the sample subjected to analysis.	
	iii) All precipitates are required to be heated above 250°C for drying.	
	iv) Equivalence point and end point are always the same.	
87 EV.	v) Colorimeters are more sensitive than Spectrophotometers.	
12,00	vi) Cis and trans isomers can be distinguished using UV-visible spectroscopy	
.v: 50 C		

C. Match the following: (any **Five**)

a. Impurity in precipitate

- 1. Digestion 2. Post precipitation
- 3. Molar absorptivity
- 4. Transmitance
- 5. Volumetric analysis
- 6. Cell Constant

- b. Conductometry
- c. dm³ mol⁻¹ cm⁻¹
- d. Methodic errors
- e. It /I0
- f. Increase in particular size
- g. Separation technique

Q 2. Answer **any Four** of the following sub-questions

(20)

(5)

- a. Compare the advantages and limitations of classical method of analysis with instrumental method of analysis.
- b. What is error? Distinguish between determinate and indeterminate errors.
- c. What is sub-sample? Discuss coning and quartering method to reduce the sample size of solid sample.
- d. The Copper content of the ETP of electroplating industry was recorded for five times in a day to get following data:

reading	1	2	3	4	5
Cu (ppm)	9.4	9.7	9.6	10.1	9.7

Calculate absolute and relative error for above data if the true value is 9.8 ppm.

- e. With the help of a suitable diagram explain tools used for sampling of gases.
- f. Discuss the methods of minimizing the errors.

Q 3. Answer any Four of the following sub-questions

(20)

- a. What are the various types of titrations? Give one example each.
- b. Discuss the criteria for selection of an indicator in acid base titrations.
- c. At 298 K 10.0 cm³ of 0.1 M acetic acid is titrated against 0.1 M sodium hydroxide Calculate the pH of the solution on $(K_a = 1.8 \times 10^{-5}, K_w = 10^{-14})$.
 - Addition of 7.0 cm³ sodium hydroxide from the burette
 - Addition of 13.0 cm³ sodium hydroxide from the burette. (ii)
- d. What is co-precipitation and post precipitation? How can it be avoided?
- e. Discuss various types of gravimetric analysis giving one example each.
- f. Define standard solution. How are they prepared? Distinguish between primary standard and secondary standard

Q 4. Answer **any Four** of the following sub-questions

(20)

- a. Discuss the principle and experimental set-up for performing photometric titrations.
- b. With the help of suitable diagram explain working of single beam spectrophotometer?
- c. 3.2×10^{-4} M solution of substance has a transmittance of 0.805 when measured at 525 nm in a cell with path length of 1 cm. Calculate the absorbance of the solution if its concentration is double of its original concentration.
- d. How are Cu(II) and Bi(III) estimated in a mixture using photometric titration?
- e. Explain the calibration curve method of quantitative analysis. How is the concentration of unknown solution calculated without plotting the graph?
- f. How are organic functional groups identified using UV Visible spectrometry

Q 5. Answer **any four** of the following.

(20)

- a. Discuss the sampling of stationery and flowing liquids.
- b. What are the different methods of instrumental analysis?
- c. Discuss the importance of calibration of volumetric apparatus? How is 100 cm³ standard flask is calibrated?
- d. Calculate the normality (N) of the following molar solutions:
 - (i) 0.30 M sulphuric acid
- (ii) 0.25 M sodium hydroxide
- (ii) 0.50 M succinic acid
- (iv) 0.30 M ammonium hydroxide
- (v) 0.10 M oxalic acid
- e. Explain the working of "photo multiplier tube with the help of a diagram". What are its applications?
- f. List the fundamental differences between colorimeter and spectrophotometer.

53781 Page **3** of **3**