[Time: Three Hours]

2. Answers to the same questions must be written together.

NB: 1.All questions are compulsory.

3. Figures to the right indicate full marks.

[Marks: 100]

Please check whether you hav	e got the right	question paper
------------------------------	-----------------	----------------

(A)	Select the correct option and complete the following
	statements(Any twelve)
i)	The pH of Milk is
	a) 5.6 b) 6.5 c) 7.5
ii)	is an example of basic buffer.
	a) $NH_4OH + NH_4Cl$ b) $CH_3COOH + CH_3COONa$
	c) NH ₄ OH + NaCl
iii)	The pH of 0.001 M HCl is
	a) 0.001 b) 3 c) 0.1
iv)	among these has the shortest wavelength.
	a) Radio waves b) Infrared waves c) Ultraviolet waves
v)	Repeatable entity of a crystal structure is known as
,	a) crystal b) lattice c) unit cell
vi)	Amorphous solids are
,	a) super cooled liquids
	b) substances with definite melting points
d	c) possess anisotropy
vii)	The number of bond pairs in silicon tetrachloride molecule
	a) 4 b) 0 c) 2
viii)	Number of electrons in valence shell of carbon in methane
2,2,2,2	
	a) 4 b) 8 c) 6
ix)	The Steric number for CO ₂ molecule is
	a) 4 b) 2 c) 8
x)	The bond angle in HgCl ₂ is
	a) 120° b) 90° c) 180°
xi)	A graphical plot of potential vs pH of an electrochemical
	system is
7.2000	a) Frost b) Latimer c) Pourbaix
xii)	Indicator used in the titration involving the use of Iodine
	solution is .
	a) KMnO ₄ b) starch c) methyl orange
xiii)	The bond angle in planar cyclohexane is
X 8 7 5 8 6	a) 60° b) 120° c) 109°

	xiv)	is used as a catalyst in halogenation of benzene.				
		a) FeCl ₃ b) FeCl ₂ c) LiAlH ₄	25/2			
	xv)	Cl has inductive effect.				
		a) electron attracting b) electron repelling c) none				
	xvi)	Anthracene haspi electrons				
		a) 6 b) 10 c)14				
	xvii)	Phenanthrene is				
		a) aromatic b) antiaromatic c) non aromatic				
	xviii)	Electron withdrawing groups haveeffect on aromatic				
		ring in electrophilic substitution.				
		a) activating b) deactivating c) none	550			
(B)		State whether the following statements are True or False	(3)			
		(Any Three)				
	i)	In an infinitely dilute solution, a weak electrolyte is completely dissociated.				
	ii)	The energy of visible light is lesser than the infrared rays.				
	ClF ₃ is T-shaped molecule.					
	iv)	The number of lone pairs in BeCl ₂ molecule is one.				
	v)	Cyclopentadiene is Antiaromatic.				
	vi)	The energy of transition state is higher than that of intermediate.				
(C)		Match the following columns(Any Five)	(5)			

Y A B	Column A		Column B
(i)	pH of gastric juice	(a)	32
(ii)	Elements of symmetry of cubic crystal	(b)	reduction
(iii)	Decrease in oxidation number	(c)	m-directing group
(iv)	self indicator	(d)	2.0
(v)	-NO ₂	(e)	axial bonds become equatorial
(vi)	Flipping of	(f)	23
	cyclohexane	(g)	KMnO ₄
	V.	(h)	phenolphthalein

65147 Page **2** of **5**

Q.2		Atte	empt any Four of the following	AR
	(A)		Explain the use of Henderson equation for the measurement of	(5)
			pH of a basic buffer solution?	
	(B)		A buffer solution of pH 4.5 is to be prepared by using acetic	(5)
			acid and sodium acetate. Calculate the ratio of [salt]: [acid]	2.42
			that must be used.[Given: $Ka = 1.8 \times 10^{-5}$]	
	(C)		Define the term Degree of ionization. What are the factors	(5)
	` '		which affect the degree of ionization?	
	(D)		The lowest frequency of electromagnetic radiation used for	(5)
	()		communication purposes is at 76 Hz. Calculate the	47.7
			a) wavelength	25
			b) frequency in m ⁻¹ and	
			c) energy of the electromagnetic radiation.	
			[Given: $c=3 \times 10^8$ m/s: $h=6.626 \times 10^{-34}$ Js]	
	(E)		Define crystallography and interfacial angle. Explain the law of	(5)
	(—)		constancy of interfacial angles.	(-)
	(F)		What are the seven crystal systems? Give the unit parameters	(5)
	(-)		(length and angels) of any three-crystal system.	(-)
Q.3			Attempt any Four of the following	
Z	(A)		Define the following terms:-	(5)
	(1-1)		a) polarizability b) ionic bond	(0)
			c) metallic bond d) covalent bond	
	(B)	E.	Draw Lewis dot structures for the following molecule/ions.	(5)
	(2)	25,77	a) BF ₃ b) NH ₄ ⁺	(0)
	(C)	266	Explain isoelectronic principle. Give any two of its applications.	(5)
	(D)		Give a brief account of Sidwick-Powell theory. On the basis of	(5)
		\$ 45 4 45 4 45 4 45 4 45 4 45 4 45 4 45	this theory predict the shape of the following molecules.	(-)
2			a) BeH ₂ b) BCl ₃	
S.	(E)		Balance the following redox reaction with stepwise	(5)
			explanation:	(-)
3333			$Fe^{2+} + MnO_4^- + H^+ \rightarrow Mn^{2+} + Fe^{3+} + H_2O$	
	3,3,4		(in acidic medium)	
	(F)	i)	Calculate the E system for titration of 10.0cm ³ of 0.1M Fe ²⁺	(5)
		100 0 V	with a standard solution of Ce ⁴⁺ in presence of 0.1 M Sulphuric	(0)
	Z Z Z Z	5,000	acid, on addition of	
		A TOPO	a) 5.0cm ³ and b) 11.0 cm ³ of 0.1M Ce ⁴⁺ solution at 298 K	
			$E^{0}(_{Pt/Fe}^{3+},_{Fe}^{2+})=0.771V, E^{0}(_{Pt/Ce}^{4+},_{Ce}^{3+})=1.44V$	
Q.4	(A)		Explain Nitration of Benzene with mechanism?	(3)
		ii)	Explain Baeyer's strain theory ?	(2)
	(B)		Explain Huckel's Rule of aromaticity? Discuss aromaticity of	(5)
65147			Page 3 of 5	

napthalene and anthracene.

(C) i) Which of the following has substituent on axial bonds? (3)
a) b)

OH OH

- ii) Explain antiaromaticity with suitable examples? (2)
- (D) State Hammond's Postulate. Explain how it is possible to identify the structure of Transition States. (5)
- (E) Explain Steric strain and Pitzer strain? (5)
- (F) What are activated aromatic rings and deactivated aromatic rings? (5)

Q.5 Attempt any Four of the following

- (A) Derive the expression for ionic product of water. (5)
- (B) Define wavelength and frequency. Give three characteristics of (5) electromagnetic radiation.
- (C) i) Find out the oxidation number of S in $Na_2S_2O_3$ and H_2SO_4 . (2)
 - ii) What are disproportionation reactions? Explain the disproportionation reaction of Cu⁺ to Cu²⁺ and Cu⁰. (3)
- (**D**) Explain Frost diagram for manganese ion in various oxidation (5) states.
- (E) Draw the chair conformation and boat conformation of cyclohexane. Explain the structures of chair conformations and boat conformation? (5)
- (F) Which of the following are aromatic, antiaromatic or non aromatic. Justify (5)

b)

a) (

c)

65147 Page **5** of **5**