(Marks: 100) (Time: 3 Hours) | | | er you have got the rig | tht question paper. | | |--|---|---|------------------------------|--------| | | 1 the Questions are comp | · | | 200 | | | gures to the right indicat | | | | | | ne use of log table /progr | | | | | 4) Ar | nswers for the same ques | stion should be written | together. | 17 A D | | Q.1A) | Select the correct ope
(Attempt any twelve | tion and complete the f | following sentences | | | | i) Molar volume of NH
a) 22.083dm ³ | I_3 gas at NTP is
b) 22.084dm ³ | c) 22.4dm ³ | NO SK | | | , | | | | | i | i) The second law them | modynamics introduce | s concept of | | | | a) free energy | b) enthalpy | c) entropy | | | ii | i) The compressibility | factor is expressed by | equation | | | | a) $PV = ZnRT$ | | c) $\overline{Z} = PV$ | | | iv | v) The mass of 22400 c
a) 4.4g | m^3 of CO_2 (C =12,O=1 | 16)gas at NTP will be c) 44g | | | , | y) For the reaction C_2H
a) $Kp = Kc$ | $_{4}(g) + H_{2}(g)$ b) $Kp = Kc /RT$ | A Y A V . X | | | V | i) When salt dissolves i | in water entropy | | | | • | a) decreases | | c) remains constant | | | vi | i) Carbon dioxide, and | sulphur dioxide are | gases. | | | E V | a) acidic | | c) neutral | | | S & Vii | i) The colour of the bro | nmine gas is | | | | | a) reddish brown | | c) black | | | | x) Ions with negative ch | narges are called | _• | | | | a) anion | b) cation | c) mixture | | | | x) According to Lowry- | - Bronsted concept bas | | | | ************************************** | a) protophilic | b) protogenic | c) both a & b | | | T TO THE TOTAL X | i)is the Bronst | ead base | | | | STATE OF STATE | a) S ² | b) Cl | c) Al ³⁺ | | 65164 ## Paper / Subject Code: 77208 / Chemistry : Paper I | | xii) | is the hard acid | | | 3 | |--|-----------|--|-------------------------------|--|---------------------------------------| | | ŕ | a) Co^{3+} is the hard acid | b) NO ₂ | c) SCN | 35 J | | | xiii) | Bromination of propane gi
a) n-propyl bromide | | major product. l bromide c) 1,2-dibromopropane | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | xiv) | Reaction intermediate in E a) carbocation b) | () | c) carbon free radical | 7. 45. 07. C | | | xv) | More polar solvents favour a) E ₁ b) E ₂ | reacti
c) E _{lcB} | on. | | | | xvi) | Diels-Alder reaction is an a addition b) cycle | example of | | | | | xvii) | sp hybridized carbon is mo
atom. a) acidic b) basic | | sp ² or sp ³ hybridized carbon | | | | xviii) | Catalytic hydrogenation of a) cis b) trans | | -20, 72 × 20 × 21 × 20 × 21 × 21 | | | B) | | State whether the following three) | g sentences ar | e true or false. (Attempt any | 3 | | | i) | Reaction between NaOH and HCl is reversible. | | | | | | ii) | Entropy is an extensive property. | | | | | | iii) | Ammonium chloride and ammonium hydroxide have uncommon ions. | | | | | | iv) | To maintain constant pH a buffer mixture is used. | | | | | | | Hydroxylation of alkene by | | | | | | vi) | Alkenes undergo addition | reactions. | | | | C) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | Match the following (atter | npt any five) | 4 | 5 | | | Section 1 | i) Boyles law | a) | Second order reaction | | | \$ \fo | | ii) n is zero | b) | Toxic | | | | | iii) Fe ⁺³ | c) | KOH | | | 3 DE | | iv) As | d) | V α 1/P | | | 333 | | v) Alkene hydroxylation | e) | $k_4 \operatorname{Fe}(\operatorname{CN})_6$ | | | | 9 8 8 V | vi) E ₁ reaction | f) | Kp = Kc | | | 36 | | 8 | <u> </u> | $KMnO_4$ | | | FOLK | 2 2 6 V | | h) | First order reaction | | | 82 | × 45.6 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | | Q.2 | Attempt any four of the following. A) State and explain Joule Thomson's effect. B) Derive van der Waals equation for pressure correction. C) Calculate the pressure exerted by 1mol of NH ₃ in 30dm ³ at 300K using a)ideal gas equation b) van der Waals equation. The value of van der Waals constant 'a' and 'b' for NH ₃ are a=0.5563Nm ⁴ mol ⁻² and b=6.38x10 ⁵ m ³ mol ⁻¹ (R=8.314JK ⁻¹ mol ⁻¹ D) What are Kp and Kc? Obtain relationship between them. | | | |-----|---|--------|--| | | E) State the Le-Chateliers principle and discuss its application. F) Explain entropy of a system. For the reaction N₂(g) +3H₂(g) === 2NH₃(g) standard free energy at 298K is -103.25 KJ. Calculate equilibrium constant for the reaction at same temperature (R=8.314JK⁻¹mol⁻¹). | 5 | | | Q.3 | Attempt any four of the following. A) Write short note on use of complexes forming ability in qualitative analysis with any one example. | 5 | | | | B) What do you mean by qualitative analysis? What are the types of it on the basis of weight of sample? | 5 | | | | C) How will you prepare starch iodide paper and lead acetate reagent papers? | 5 | | | | D) Explain Arrhenius concept of acids and bases. | 5
5 | | | | E) What is Pearson's concept of hard soft acids and bases?F) Give any three advantages and limitations of Lewis concept of acids and bases. | 5 | | | Q.4 | Attempt any four of the following. | | | | | A) i) Explain Wurtz-Fittig reaction with examples. | 3 | | | Z | ii) Explain: Iodination of alkanes is difficult.B) Complete the following reaction and give its mechanism | 5 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | C) i) State and explain Hofmann elimination with suitable example. ii) Complete the following reactions $CH_3 - CH - CH_3 \qquad \underline{conc.H_2SO_4} \qquad ?$ OH | 3 2 | | | | CH ₃ -CH-CH ₂ -CH ₃ <u>alc.KOH</u> ? Br | | | | 500 | ACKEA ACE DI | | | 65164 Page 3 of 4 ## Paper / Subject Code: 77208 / Chemistry : Paper I | | D) 1) How does acetylene converted into following compounds? | 3 | |-----|--|--| | | a) Acetaldehyde b) Vinyl chloride | | | | ii) Give ozonolysis products of 2-methyl propene. | 2 | | | E) Explain the mechanism of hydroboration-oxidation of alkene with suitable example. | 5 | | | F) Explain the mechanism of E ₂ - elimination reaction with energy profile diagram. | 5 | | Q.5 | Attempt any four of the following. | STATE OF THE | | | A) State and explain the law of mass action. What is the significance of equilibrium constant? | 5 | | | B) Explain the assumptions of kinetic theory of gases | 5 | | | C) Calculate the solubility in pure water of silver chloride whose solubility product is 1.1×10^{-10} at 298 K. | 5 | | | D) What are the different types of titrations on the basis of reaction involved? | 5 | | | E) How are metal acetylides prepared? How is sodium acetylide converted to propyne and 1- butyne? | 5 | | | F) Explain the mechanism of 1,2 and 1,4- addition of Br ₂ to 1,3-butadiene. | 5 | 65164 Page 4 of 4