Q.P. Code:03735

[Marks:100]

		2. Answers to the same questions must be written together.
		3. Figures to the right indicate full marks.
		4. The use of long table/non-programmable calculator is allowed.
Q.1 A	Select	the correct option and complete the following statements.
•	i.	At 298 K, pOH of NaOH of solution is 2.5, its pH is
		a) 14
		b) 2.5
		c) 11.5
	ii.	The dissociation constants for some monobasic acids are: K_a (Acid) ₁ = 5.4 X 10^{-10} , K_a (Acid) ₂ = 1.8 X 10^{-5}
		and K_a (Acid) ₃ = 6.3 X 10 ⁻⁵ is the weakest acid among them.
		a) $(Acid)_1$
		b) (Acid) ₂
		c) (Acid)₃
	iii.	The SI unit of frequency of radiation is
		a) cm
		b) m
		c) Hertz
	iv.	The maximum number of centre of symmetry possesses by any crystal is
		a) 2
		b) 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
		c) 1 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	٧.	The bond angle $X - P - X$ in PX_3 gets reduced
		a) with increase in electronegativity of halogen atom
		b) with decrease in electronegativity of halogen atom
		c) without any effect of electronegativety of halogen atom
	vi.	The steric number gives
	6	a) only number of bonded atoms
		b) number of bonded atoms and lone pair of electrons
	1000	c) only number of lone pairs
	Svii.	Strong reducing agents have
2	1200	a) greater positive value of standard reduction potential
25,7		b) greater negative value of standard reduction potential
80 30 C	S. S. A.	c) lesser positive value of standard reduction potential
	viii.	The indicator employed in the titrations involving the use of iodine solution is
,,0,0		a) starch starch
320		b) methyl orange
00 60%	3700	c) phenolphthalein
400	ix.	Flagpole hydrogen in cyclohexane experiences strain.
3070		a) Pitzer
6,00	10,00	b) Angle

[Time: Three Hours]

1. All questions are compulsory.

N.B:

c) Transannular

Please check whether you have got the right question paper.

x. Out of the following, _____ is anti –aromatic?

- xi. In chlorobenzene, Cl exhibits ______effect:
 - a) Only +R effect
 - b) Only I effect
 - c) Both +R effect & -I effect
- xii. _____ is meta directing group in aromatic electrophilic substitution.
 - a) –CN
 - b) -Cl
 - c) -NH₂
- B State whether the following statements are True or False:

3

- i. Radio waves have more energy than IR radiations.
- ii. Density of water is less than that of ice.
- iii. Anti-aromatic compounds are more stable than aromatic compounds.
- C Match the following columns:

5

3

5

3

5

3

- i. Mixture of acetic acid & sodium acetate
- ii. Plank's theory
- Oxidation state of Mn in KMnO₄
- iv. Covalency of N
- v. Tetrahedral angle

with 800 nm.

- Column B
- 1) 109º28'
- 2) Basic buffer
- 3) Acid buffer
- 4) Quantisation of energy
- 5) 3
- 6) 107⁰
- 7) +5
- 8) +7
- Q.2 A i. The degree of ionization of 0.1 M acetic acid solution is 0.0134 at 298 K. What will be the degree of ionization of 0.05 M acetic acid solution at 298 K.
 - ii. Explain any three factors that affect degree of ionization.

OF

- A i. Explain the mechanism of the buffer action of acid buffer.
 - ii. Calculate Hydroxyl ion concentration [OH-] of a solution having pH 4.70 at 298 K
- B i. Calculate and compare the energies of two radiation, one with wavelength 400 nm and the other

 $(h = 6.625 \times 10^{-34} \text{ J.s, c} = 3 \times 10^8 \text{ m/s})$

ii. State and explain law of constancy of interfacial angles

OR

Q.P. Code: 03735

В	i.	Find Miller indices of the planes whose intercepts on crystallographic axes are (3a,b,c) and	5
		(3a,3b, ∞c)	3
	ii.	Write a note on electronic transition	
С	i.	Define: a) pH b) Common ion effect	2
	ii.	Define: a) electromagnetic spectrum b) Wave number of radiation	2
С	i.	Define: a) Diprotic acid b) Buffer capacity	2
	ii.	Define: a) Axis of symmetry b) Unit cell	2
Q.3 A	i.	Explain (a) covalent bond (b) ionic bond with suitable examples.	4
	ii.	Define polarizability of an anion. Explain any two factors which favour the covalent character of an ionic bond.	4
Α	i.	Draw the Lewis dot structure for the following molecules	4
		i) NH ₄ +	
		ii) CIO4	
	ii.	What is VSEPR theory? Describe the basic ideas of VSEPR theory given by Gillespie and Nyholm.	4
В	i.	Balance the following equation with stepwise explanation in acidic medium:	4
		$Cr_2O_7^{2-} + C_2O_4^{2-} + H^+ \rightarrow Cr^{3+} + CO_2 + H_2O$	
	ii.	The standard electrode potential values of TI for the following redox reactions are given below:	4

Redox reaction	E ⁰ values
$TI^+_{(aq)} + e^- \rightarrow TI_{(S)}$	-0.34V
$TI^{3+}_{(aq)} + 2e^{-} \rightarrow TI^{+}_{(S)}$	1.25V
$TI^{3+}_{(aq)} + 3e^{-} \rightarrow TI_{(S)}$	E ⁰ =?

Construct the Latimer diagram and find out the E^0 and ΔG^0 values for the reaction:

$$TI^{3+}_{(aq)} + 3e^- \rightarrow TI_{(S)}$$

OR

- B i. Explain the role of KMnO₄ as an oxidizing agent with suitable example.
 - ii. Calculate the E_{system} for the titration of 10 cm³ of 0.1M Fe(II) versus 0.02M KMnO₄ on addition of (a) 5.0 cm³ (b) 10.0 cm³ and (c) 11.0 cm³ of 0.02M KMnO₄ in a solution of pH = 1 [E⁰ Pt/Fe(III),Fe(II) = 0.77 V;

 $E^{0}_{Pt/MnO4-,Mn2+} = 1.51 \text{ V}$

- C Explain the application of VSEPR theory for predicting and F I F bond angles in IF₇ [Atomic number of I=53] 4
- C Explain the application of VSEPR theory for predicting shape and F Xe F bond angles in XeF₂ [Atomic 4 number of Xe = 54]
- number of Xe = 54]
 Q.4 A
 i. Draw the chair and boat conformations of cyclohexane and explain their relative stabilities. 5
 - ii. Explain aromaticity of naphthalene. Draw its resonating structures.

OR

3

5

3

5

3

- A i. Explain stability of cyclobutane and cyclopropane on the basis of Angle Strain Theory.
 - ii. Explain aromaticity of anthracene. Draw its resonating structures.
- B i. Explain the effect of presence of nitro group on benzene for further electrophilic substitution with respect to orientation and reactivity.
 - ii. Explain Huckel's rule with examples.

Q.P. Code :03735

OR

В	i.	How will you prepare cumene from benzene? Name the reaction and write its mechanism.	9	
	ii.	Write a note on ortho, para- directing groups in electophilic aromatic substitution. With examples.	90	
C	i	Which of the following are aromatic: Tropylium cation and cyclopentadiene? Justify your answer.	95	
C	::		8	
	ii.	Why is cyclobutadiene antiaromatic in nature?	<u> </u>	
			30	
С	i.	What is meant by flipping? Explain flipping in cyclohexane.	\\ Z	
			2	
Q.5	Attemp	pt any four of the following.		
Α	Derive	Henderson equation for the pH of basic buffer.		
В	Disting	guish between amorphous solids and crystalline solids.		
С	On the	he basis of Lewis concept of covalent bonding explain single and double bonding in covalent molecules		
D	Find th	nd the oxidation number of sulphur in Na ₂ S ₂ O ₃ , H ₂ SO ₄ , SO ₂ , SF ₆ and H ₂ S.		
Е	What a	hat are the conditions which must be satisfied for a compound to exhibit aromatricity?		
F	What is	What is Friedel Craft's acylation? Give an example with mechanism of the reaction		

