[Time: Three Hours]

[Marks:100]

12

Please check whether you have got the right question paper.

- N.B: 1) All questions are compulsory.
 - 2) Answers to the same questions must be written together.
 - 3) Figures to the right indicate full marks.
 - 4) The use of log table/non-programmable calculator is allowed.

					- V ' 40 (0 ' . '
O 1 1	C = 1 = = 4 + 1 = = = = = = = +		_ 4 _ 4	C _ 11	
() I Δ	Select the correct	Ontion and (COMPLETE THE	TOUOWING	statements

- i. A plane whose intercepts in crystallographic axes are $\frac{1}{2}$ a : ∞ b : $\frac{1}{3}$ c, its Miller indices are
 - a) 2:0:3
 - b) $^{1}/_{2}:0:3$
 - c) 3:0:2
- ii. Sodium chloride crystal possesses elements of symmetry.
 - a) 23
 - b) 24
 - c) 22
- iii.is the pOH of 0.1M NaOH.
 - a) 13
 - b) 1
 - c) 14
- iv. The energy of X-rays is that of ultraviolet radiations.
 - a) less than
 - b) greater than
 - c) equal to
- v. The molecular shape of PCl₅ is
 - a) triangular planar
 - b) pentagonal
 - c) trigonal bipyramidal
- vi. molecule / species is isoelectronic with CS₂.
 - a) NO₂
 - b) NO₂⁺
 - c) NO₂
- vii. Oxidation state of Chromium in CrO₄²⁻ is
 - a) +6
 - b) +2
 - c) +4
- viii. In the reaction: $Zn + Cl_2 \rightarrow ZnCl_2$,
 - a) Zn is reduced
 - b) Zn is oxidized
 - c) Chlorine is oxidized

	ix.	a) Eclipsedb) Staggeredc) Skew	train.	(A) (A) (A)
	X.	When a molecule experiences strain, its internal decreases b) increases c) equalizes	al energy	92 57 080
	xi.	Cyclooctane has strain than cyclohexan a) lesser b) greater c) equal or lesser	e due to torsional strain.	
	xii.	Cyclohexane has the highest of all the a) stability b) unstability c) energy	alicyclic ring systems.	
В	State i.	whether the following statements are True or F Fluorescence involves the absorption of high er the instantaneous emission of low energy radia	nergy radiation by a sample followed by	03
	ii.	Greater the difference in electronegativity of the bond formed.	e combining atoms, more polar is the	
	iii.	C –C –C bond angle in cyclopropane is 120°.		
С	Match	n the following columns.		05
		Column A	Column B	
	i. S	Henderson's equation for acid buffer	1) 0.1nm	
	SIF S	1A ⁰	2) Frost diagram	
20	in.	Self oxidation and reduction	3) ortho, para directing	
	iv.	Graphical representation of stability of different oxidation states	4) disproportionation	
8 4 6	V.	–SO₃H	5) deionization	
			6) meta directing and deactivating group	
	37.75°		7) pH = pka + $log \frac{[salt]}{[acid]}$	
			8) pH = pka - $log \frac{[satt]}{[acid]}$	
Q.2 A	i.	Derive an expression for the acid dissociation c and for the base dissociation constant of a wea		05
	O II)	Explain:		
		a) Buffer action b) Buffer capacity.		03
(10)	· v O ' N V	(20 K (0 (6) 80		

Q.P. Code :03733

OR

Α	i. Def	ne the term crystallography and state its three laws.	05
	ii. Wh	at is emission spectroscopy ?	03
В	i.	A buffer solution of pH equal to 6.6 is to be prepared with 500 cm 3 of 0.08M solution of a weak acid HA (Ka = 6 x 10 $^{-6}$). Calculate the amount of the salt to be added to the buffer solution. The molar mass of the salt is 142.	05
	ii.	Calculate the frequency, wave number and energy associated with a quantum of visible light of $5250A^0$. (h = 6.626×10^{-34} Js, c = 3×10^8 m/s)	03
		OR	
В	i.	The dissociation constant of a weak monobasic acid is 2.6×10^{-5} . Calculate its degree of dissociation and concentration of H ⁺ ions in 0.06M solution of acid.	05
	ii.	What is the pH of a 0.25M solution of a weak monoacidic base, strychnine at 298 K? $(K_b = 1.82 \times 10^{-6})$.	03
С	i. ii.	Deduce the expression for ionic product of water at 298 K. Define a buffer solution. Give examples of buffer solutions.	02
		OR	
С	i. ii.	Explain pH scale in detail. Define the term: a) Wave length of radiation b) Frequency of radiation	02 02
Q.3 A	i. ii.	Define the covalent bond. Explain its three characteristics. Illustrate with suitable examples, how the covalent character is favoured by charge on the ion and pseudo inert gas configuration.	04 04
£\\\\		OR OR	
		On the basis of Sidgwick Powell's theory, predict and explain the shapes of the following types of molecules: a) AB ₆ b) AB ₇	04
		State and justify whether the following pairs of molecules are isoelectronic or not a) PF_3 , NH_3 b) N_3 , CO_2	04
В		nce the following question with stepwise explanation in acidic medium $\ln^{2+} + S_2O_8^2 \rightarrow MnO_4^- + HSO_4^-$	04
	ii Cor	struct a Frost diagram from the following Latimer diagram (in aqueous acidic	04

solution) and explain which is

- a) the most stable oxidation state
- b) the oxidation state having highest reduction potential.

OR

- B i. Explain the role of iodine as a redox agent with suitable examples.
 - ii. Calculate the E_{system} for the titration of 50.0 cm³ of 0.1M Fe(II) with 0.02M KMnO₄ on 04 addition of (a) 25.0 cm³ (b) 50.0 cm³ and (c) 55.0 cm³ solution of 0.02M KMnO₄ at pH = 1. [$E^0_{\text{Pt/Fe(III)},\text{Fe(III)}} = 0.77 \text{ V}$; $E^0_{\text{Pt/MnO4-,MnO4-}} = 1.51 \text{ V}$].
- C Explain the application of VSEPR theory for predicting shape and F Xe F bond angles In XeF_5 [Atomic number of Xe = 54].

OR

- C Explain the application of VSEPR theory for predicting the shape and F –I –F bond angles in IF₇ [Atomic number of I = 53].
- Q.4 A i. Explain aromatic electrophilic substitution with mechanism.
 - ii. Write Hammond's postulate about transition states.

OR

- A i. Explain directing influence of –NH₂ group on electrophillic aromatic substitution.
 - ii. State the influence of the following groups on orientation of the incoming electrophile in monosubstituted benezene
 - a) -C₂H₅
 - b) -CN
 - c) -1
- B i. Explain how does –NO₂ group influence orientation and reactivity for electrophilic substitution in nitrobenezene?
 - ii. What is antiaromaticity? Illustrate with two examples.

OR

B i. What is Friedel Crafts acylation? Explain the mechanism of the reaction and give one

05

04

04

04

05

03

05

03

05

03

Q.P. Code :03733

example.

	ii. What is Huckel's rule? Explain how benezene and phenanthrene obey this rule.	0
С	Explain the aromaticity of the following :- i. Furan ii. Cyclopentadienyl anion	04
	OR THE RESERVE OF THE PROPERTY	
С	With suitable examples explain Baeyers strain and transnnular strain in cycloalkanes.	04
Q.5 A	Attempt any FOUR of the following : Explain in detail "Common Ion Effect".	0!
В	Find the Miller indices of the planes whose intercepts on crystallographic axes are (1/3) a : 4b : 2c and (1/2) a :1b : ∞ c.	0:
С	On the basis of Lewis concept of covalent bonding, explain double and triple bonding in Covalent molecules.	0!
D	Find the oxidation number of Manganese in $KMnO_4$, MnO_2 , $MnCl_2$ and Chlorine in $KClO_3$, ClF_3 .	0!
E	Draw various conformers of cyclohexane and explain their relative stabilities. Explain flipping in cyclohexane.	0!
F	Explain with mechanism :- "sulphonation of benezene".	0