Please check whether you have got the right question paper

[Time: Three Hours]

NB: 1.All questions are compulsory.

[Marks: 100]

	3. Figures	ers to the same questions must be written together. s to the right indicate full marks. e of log table/ non programmable calculator is allowed.
Q 1 (A)		Select the correct option and complete the following statements (Any twelve) (12)
	i)	Which of the following rate law of reactant 'A' and 'B' is second order? a) Rate = k [A] [B] ² b) Rate = k[A] [B] c) Rate = k [A] ² [B] ²
	ii)	The half life time of a second order reaction is to the initial concentration. a) directly proportional b) independent c) inversely proportional
	iii)	The unit of rate constant of a first order reaction involves a) only time b) time and concentration c) time and square of concentration
	iv)	In general, the viscosity with temperature. a) decreases b) increases c) remains the same
	v)	Increasing molecular mass of a liquid, the viscosity a) increases b) decreases c) no effect
	vi)	Among the following has maximum viscosity. a) water b) ethyl alcohol c) glycerine
	vii)	Outer electronic configuration of group 16 elements is a) ns ² np ² b) ns ² np ³ c) ns ² np ⁴
	viii)	Oxidation state of sulphur in H_2SO_4 is a) +6 b) +5 c) -5
	ix)	 Which one of the following best defines the word "allotropes"? a) Different structural forms of an element with same chemical properties. b) Elements that possess properties intermediate between those of metals and non-metals. c) The different phases (solid, liquid or gas) of a substance
	x)	Number of electrons in the valence shell of the O ²⁻ ion are
	xi)	Which one of the following shows catenation property? a) Carbon b) Lithium c) Magnesium
	xii)	Among the following, can cause global warming. a) H ₂ b) O ₂ c) CO ₂
	xiii)	The isomer which rotates the plane of plane polarized light in clockwise direction is isomer.

Paper / Subject Code: 81124 / Chemistry: Paper II

	xiv)	Molec	cule with one asymme	etric carbo	n has	_optical isomers.	DO TO	
		a)	2 b) 3	3	c) 4			
	xv)	n- buta	n- butane has conformations due to rotations about C ₂ -C ₃					
		bond.			290			
		,	4 b) 6		c) 3			
	xvi)					n the same side of the		
		double bond, then the isomer is called asisomer.						
		,	Z b)		c) Z-H	Y (\O , \C)		
	xvii)	Absol	ute configuration of (+)Tartario	acid can be	detected using		
		,				y diffraction		
	xviii)	_	The process of separating a racemic mixture into its component					
			omers is called				6,00	
		a)	resolution b) s	olvation	c) desc	olution	300	
(B)		State v	whether the following	, statemen	ts are True o	or False	(3)	
			Three)					
	i)				change in co	ncentration of the any		
			reactant per unit time	'				
	ii)		is the S.I unit of Visc					
	iii)		13 to 18 elements ar					
	iv)				being due to i	ts irreversible reaction	Ĺ	
)		aemoglobin in the blo	AT I				
	v)	- (al rotation is measured			\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
	vi)	6.7 Y Z	ontal lines in Fischer		formula rep	resents bonds that		
		projec	t above the plane of p	oaper.		AT		
		46.00				<i>)</i>		
(C)	T.	Match	the following colum	ns (Any I	Tive)		(5)	
(C)		Viater	the following colum				(3)	
	655	(i)	Example of a	(a)	Argon]	
			bimolecular reaction		3 2 3 3			
			is		5			
F.		(ii)	Smectic liquid	(b)	optically in	nactive	-	
			crystals-					
300		(iii)	Noble gas	(c)	2NO→N	$J_2 + O_2$	=	
		(iv)	Peroxides	(d)	geometrica	al isomerism		
5778		(v)	Olefins	(e)	diamagnet	ic]	
		(vi)	Racemic mixture	(f)	ethyl p-azo	oxy cinnamate		
		\$ \$3.00 C		(g)	paramagne	etic		
76				(h)	3NO → N	I_2O	1	
S. D.	X-60,50			(i)	optically a	ctive	1	
77.05	37766	18 6 S			<u> </u>		J	
42.5	Attem	pt any l	Four of the following	3				
(A)						If life time of a reaction	n (5)	
(B)	(12) (1) (2) (4)	7. X O Z A V	ion A → Products				(5)	
	30,67,67	$k = 2.0 \times$	10 ⁻² s ⁻¹ .Calculate the	e concenti	ration of A re	emaining after 100		

63653 Page **2** of **4**

concentration of the reactants.

Q. 2

(C)

Derive the integrated rate equation of a second order reaction having equal (5)

seconds, if the initial concentration of A is 1.2 mol/L.

	(D)		Define Viscosity of a liquid. How is it determined using a Ostwald's viscometer?	(5)
	(E)		In a Stalagmometer experiment, the same volume of organic liquid and water formed 30 and 25 drops respectively. If the surface tension of water is $7.2 \times 10^{-2} \text{ Nm}^{-1}$. Calculate surface tension of organic liquid. The density of	(5)
	(F)		organic liquid is 0.85×10^3 kg m ⁻³ and that of water is 1.0×10^3 kg m ⁻³ . What are Liquid Crystals? Discuss the classification of liquid crystals.	(5)
Q. 3			Attempt any Four of the following	
Q. 3	(A)		What is diagonal relationship between elements? Explain it with respect to beryllium and aluminium.	(5)
	(B)		How does nitrogen differ from other group 15 elements?	(5)
	(C)		How is sodium carbonate prepared? State any two each of its properties	(5)
	(D)		and uses. Formulate the hydroxides of alkali metals and compare their basic	(5)
	()		strengths.	(-)
	(E)		Give important applications of quick lime (any five).	(5)
	(F)		What are carbides? How are alkali metal carbides prepared?	(5)
0.4			Attempt any Four of the following	
Q. 4	(A)		Explain the terms with suitable examples:	(5)
	(A)		a)Threo isomer b) Erythro isomer	(3)
	(B)	i)	Distinguish between Enantiomers and Diastereoisomers.	(3)
	(-)	ii)	Assign R or S descriptors	(2)
		,	a) 8 8 6 6 8 8 5 8 5 8 6 b) 8 6 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	()
			CHO COOH	
			CI-OH HAN-H	
		0	CI OH H ₂ N H	
		15 K	ĆH ₂ OH	
	(C)	i	Give the structures of the following	(2)
	Ċ	3000	a) D – glyceraldehyde	` ′
		500	b) Cis -2 butene	
		ii)	Identify chiral and achiral molecules	(3)
	\$ 6 C		a) CH ₃ CHBr ₂	
R			b) CH ₃ CH(OH)Br	
65			c) C ₂ H ₅ CH(Cl)CH ₃	
950	(D)	828	Draw the conformations of n-Butane for rotation about C_1 - C_2 bond and	(5)
1200	546		discuss their relative stabilities.	
D. W. Z.	(E)		Convert the following molecules from Fisher projection formula to	(5)
	XXX C		Sawhorse formula.	
	A CONTRACTOR	E COS	b) COOH CH	
		SALE.	COOH CH ₃	
900		1 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HO H Br	
		42.5%	N P P P P P P P P P P P P P P P P P P P	
	0,000		H——Br	
N. B. B.	3,000		СООН СН ₃	
	(F)	(i)	What are the characteristics of Meso isomers?	(3)
		ii)	Discuss the causes of geometrical isomerism	(2)

63653 Page **3** of **4**

Q 5		Attempt any Four of the following	XX
	(A)	Explain how Graphical method is used to determine the first order and second order of a reaction.	(5)
	(B)	What do you mean by an optically active compound? The refractive index of a liquid at 25°C is 1.6 and its density is 0.87 g cm ⁻³ . Find the molar refraction of the liquid. (Molecular mass of the liquid is 78).	(5)
	(C)	Name any two oxides of Carbon. Write any two sources and control measures for each oxides of carbon.	(5)
	(D)	Write a brief note on Acid Rain.	(5)
	(\mathbf{E})	What is conformational analysis? Draw the various conformations of	(5)
		Ethane using Saw horse and Newman projection formula.	
	(\mathbf{F})	Explain optical isomerism in Lactic acid.	(5)

63653 Page **4** of **4**