	class:sycs sub: Fundamentals of algorithm sem:4							
r no	Question	А	b	с	D	Answer		
	If all edges have the same weight in an undirected graph, which algorithm will find the shortest path between two nodes more efficiently?	Dijkstra's	Bellman ford	DEPTH-First Search	Breadth- First Search	Breadth-First Search		
	in which algorithm FIFO queueused to maintain 2 wavefront	BFS	DFS	Kruskal's	none of above	BFS		
	Incase a list of n numbers to be sorted in ascending order, some numbers may be at their required position and some may 3 be not in order.	Best case	worst case	avg case	base case	avg case		
	is a more generalized single source shortest path algorithm which can find t he shortest path in a graph with 4 negative weighted edges	Kruskal's algorithm	Prim's algorithm	Prim's algorithm	Bellman ford algorithm	Bellman ford algorithm		
	A pivot element to partition 5 unsorted list is used in	Merge Sort	Quick Sort	Insertion Sort	Selection Sort	Quick Sort		
	Quick sort algorithm is an 6 example of	Greedy approach	Improved binary search	Dynamic Programming	Divide and conquer	Divide and conquer		

i					1	
	we would like to sort a list					
	of n numbers in ascending					
	order and the list is given in					
	descending order It will lead					
	toscenario for					
	the sorting algorithm					
7		Avg case	Best case	Worst case	all	Worst case
	algorithm					
	break the problem into					
	several subproblems solve					
	the subproblems					
	recursively, and then					
	combine these solutions to					
	create a solution to the		divide and		Quick	
8	originalproblem	Insertion sort	conquer	merge sort	sort	divide and conquer
	The time that depends on					
	the input: an already sorted					
	sequence that is easier to		Č			
g	sort	Process	Evaluation	Running	Input	Running
	The in-order traversal of					
	tree will yield a sorted					
	listing of elements of tree in		binary search		binary	
10)	binary trees	trees	heaps	heaps	binary search trees
	The node which does not					
	have any child node is				parent	leaf node.
11	called	child node	leaf node.	root node	node	
	IN algorithm uses a					
12	priority queue	Kruskal's	Prim	Bellman ford	Dijkstra's	Prim
					Divide	
	Which of the following uses	Greedy	Improved binary	Dynamic	and	
13	memoization?	approach	search	Programming	conquer	Dynamic Programming

	an algorithm					
	has come to mean					
	predicting the resources				none of	
14	that the algorithm requires	sorting	analyzing	running	above	analyzing
		Cummers at the st				
		Suppose that				
	what is second property	the two				
	of LCS	sequences X				
		and Y do not	two sequences			Suppose that the two sequences
		end in the	both end in the		NONE OF	X and Y do not end in the same
15		same symbol	same element.	BOTH	ABOVE	symbol
		Suppose that				
	what is first property of	the two	YA			
	LCS	sequences X				
		and Y do not	two sequences			
		end in the	both end in the		NONE OF	two sequences both end in the
16		same symbol	same element.	вотн	ABOVE	same element.
					It can be	
	Which of the following is				either	
	false in the case of a	It is tree that	It is a subgraph of	It includes every	cyclic or	
17	spanning tree of a graph G?	spans G	the G	vertex of the G	acyclic	It can be either cyclic or acyclic
	Which of the following is not					
	the algorithm to find the					
	minimum spanning tree of			both a an option	Bellman	
18	the given graph?	Kruskal's	Prim	b	ford	Bellman ford
	Which of the following is the			both a an option	none of	
19	algorithm to find the path?	Bellman ford	Dijkstra's	b	above	both a an option b
	Strassen's matrix					
	multiplication algorithm					
	follows	Divide and			none of	
20	technique.	conquer	Greedy approach	parsing	above	Divide and conquer

21	Fractional knapsack is based onmethod	Greedy	Branch and Bound	Dynamic Programming	Divide and Conquer	Greedy
22	What is the basic principle behind Bellmann Ford Algorithm?		Extrapolation	Regression	Relaxatio n	Relaxation
23	To verify whether a function grows faster or slower than the other function, we have some asymptotic or mathematical notations, which is		Big Theta θ	Big Oh O	All of the above	All of the above
24	What is the objective of the knapsack problem?	To get maximum total value in the knapsack	To get minimum total value in the knapsack	To get maximum weight in the knapsack	To get minimum weight in the knapsack	To get maximum total value in the knapsack
25	The main time taking step in fractional knapsack problem is	Breaking items into fraction	Adding items into knapsack	Sorting	Looping through sorted items	Sorting